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Inference of genetic networks and metabolic networks from time series data obtained by bi-
ological experiments using DNA micro arrays is an important topic in bioinformatics. In this
article, we propose a method for inferring S-systems from time series data, where S-systems
are based on a particular kind of nonlinear differential equation and have been applied to the
analysis of various biological systems. We reduce each instance of the inference problem to the
linear program by means of focusing on the sign of differential (or finite difference). Although
the errors of estimated parameters are relatively large, the proposed method is much faster than
most other methods that are based on nonlinear optimization.

1 Introduction

Due to the recent progress of the DNA microarray technology [5], it has become possible (to
some extent) to measure the gene expression levels of most of the genes of an organism simulta-
neously. Recently, many studies have been done in order to develop computational methods for
reconstructing underlying genetic networks from time series data of gene expression patterns.
Several studies have been done using the Boolean network [9], where a gene takes one of
two states (ON or OFF), and a gene regulation rule is given as a Boolean function. Liang et



al. [9] developed the REVEAL algorithm (reverse engineering algorithm) for inferring genetic
networks from state transition tables which correspond to time series data of gene expression
patterns. We also made several theoretical studies on inference of Boolean networks [1]. Since
genetic networks are very complex, there are many criticisms on the Boolean network approach.
Of course, many other models and inference methods have been proposed: a qualitative model
[12], hybrid models {10, 14], a statistical method for inference of infer chemical networks [3], and
models and inference methods based in linear differential equations [6, 7]. However, no method
seems to be sufficient.

On the other hand, the S-system (synergistic and saturable system) has been developed
for analyzing and modeling biological systems [8], where S-systems are based on a particular
kind of nonlinear differential equation. S-systems have been successfully applied to the analysis
of various biological systems [8]. Recently, Tominaga and Okamoto [13] applied GA (Genetic
Algorithm) to inference of S-systems. However, their method was time consuming and was
limited to inference of S-systems with a few parameters.

In this article, we propose a novel method for inferring S-systems from time series data. We
reduce each instance of the inference problem to a linear program by means of focusing on the
sign of differential (or finite difference). We call this method the LP-based method, where LP
denotes linear programming in this article. Although the errors of estimated parameters are
relatively large, the LP-based method is much faster than the GA-based method. It is also
expected that the LP-based method is much faster than most other methods that are based on
nonlinear optimization because linear programs can be solved in polynomial time.

2 Inference of S-systems

Here we briefly review the definition of the S-system [8, 13]. Let {Xi,...,Xn} be a set of
genes and/or chemical substances in the underlying biological network. Let X;(¢) be the value
(expression level or concentration) of a gene or a chemical substance X; at time ¢.

An S-system is a set of nonlinear differential equations of the form

dX;(t) i » i hi s
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where «; and §; are multiplicative parameters called rate constants and g; ; and h;; are expo-
nential parameters called kinetic orders.

The inference problem is, given time series data X;(t) that are assumed to be generated from
an S-system S, to estimate to parameters a;, G;, g;,; and h;; of S.

Since S-systems are nonlinear, we can not apply linear regression [7] to inference of S-systems.
As mentioned in the introduction, Tominaga and Okamoto [13] applied GA (Genetic Algorithm)
to inference of S-systems with a few parameters. However, their method was time consuming.
Therefore, we developed a new method for the inference of S-systems based on LP.

The method is quite simple. Assume that é—‘%@ > 0 at time ¢. By taking ‘log’ of each side
of a; [T X;(t)9 > B; TT X;(t)", we have

n n
log o + Egi,j log X;(t) > logB; + :}: hijlog X;(¢).
=1 =1

Since X (t)’s are known data, this inequality is linear if we treat log o;’s and log (;’s as parame-
ters. In the case of Q%Q < 0, we can obtain a similar inequality. Therefore, solving these linear
inequalities by LP, we can determine parameters.



However, parameters are not determined uniquely even if a lot of data are given, because
the inequality can be re-written as (log a; —log 5;) + Y (gi,; — hs,j) log X;(t) > 0. Therefore, only
relative ratios of log o; —log B; and g; ; — hs ;'s are determined (for each ¢). But, this information
is useful for qualitative understanding of S-systems. Since [] X;(t)% contributes to the net
production of X;, [T X;(¢)%4 contributes to the net degradation of X; and it is not usual that
X; contributes to both the net production and the net degradation, either g; ; = 0 or h;; = 0
holds for each (4,7) in most cases. Thus, the fact that |g;; — h;;| is large means that X; is
influenced by X;.

It should be noted that the LP-based method is not robust for noises since parameter values
are not determined even if one linear inequality is not satisfied. However, such noisy cases may
be handled by using robust linear programming [4].

3 Computational Experiments
We made computational experiments on the LP-based method using a SUN ULTRA-2 Work-
station with 1 CPU (296MHz). In order to solve LP, we used SOPT [11]. In these experiments,
X(t) dX(t)

4

in place of ——~.
First we examined the following simple cases of n = 2, where case (A) was examined in Ref.
[13] too.

we used

il g1 g2 B hia hig2
(A) 1130 00 -25 3.0 0.125 00
2130 25 00 30 0.0 0.125
@) 1130 00 =25 30 125 00
2130 25 00 3.0 0.0 1.25

As input data, time series data beginning from randomly generated initial values in [0.5,2.0]
were used. The Euler method was used to generate the time series data, where At = 0.02 was
used. Since the LP-based method can only compute relative values of g; ; — h; ;’s, we compare
ZI; :Zi; and rg = g:f:lfgf The following table shows the result, where average
values and standard deviations over 20 trials are shown. m denotes the total number of time

points in the data, where 50 point data are generated from each set of initial values.

the ratios r| =

Correct | m =1 x 50 m =5 x 50 m = 10 x 50

(A) (r1,0) | (0.05,-) | (0.129, 0.032) (0.081, 0.009) (0.077, 0.011)
(re,0) | (-0.05,-) | (-0.261,0.232) (-0.086,0.023) (-0.085,0.011)

B) (r,0) | (0.5,-) (0.653, 0.099) (0.598, 0.054) (0.574, 0.040)
(ra,0) | (-0.5,-) (-0.648,0.108)  (-0.568,0.032) (-0.538,0.029)

In each case, parameters were inferred within 1 second, which is much faster than the GA-based
algorithm [13]. On the other hand, the errors (in case (A)) are larger. But, it is not a serious
problem because we do not aim at determining precise values. We only want to know whether
each |g;; — hi ;| is relatively large or small. Note that the errors are small for m = 50 in case
(B), whereas the errors are not small even for m = 500 in case (A). This observation suggests
that good values are not inferred if parameters in the different levels are included.

Next we examined whether or not qualitative relations are correctly inferred, by applying
the LP-based method to the case of n = 10 and K = 2 and the case of n = 10 and K = 4.
Note that only the case of n = 2 was examined in Ref. [13]. In these cases, we did not try to
infer precise values of parameters, but we tried to infer whether or not X; is influenced by X;
examining the value of |g; ; — h; ;|. We say that the set of input nodes {X;,, -+, X;, } to X; is



correctly inferred if the LP-based method outputs the same set for X;, where we say that X is
an input node to X; if h; ; # 0 and g; ; # 0 hold in the original S-system. We count the number
of nodes for which the sets of input nodes are correctly inferred. The result is shown in the
table below. In the table, the average ratios (%) of correctly inferred nodes over 10 randomly
generated S-systems are shown, where the following values are used: At = 0.01, a5 = 3; = 3.0,
0.5 < g5} < 3.0, 0.5 < |h; ;| < 3.0. Even in the case of m = 100 x 20, each inference can be
done within 30 sec. (CPU time).

m=25x20 m=50x%x20 m =100 x 20
2 30% 86% 100%
K=4 26% 69% 87%

From this table, it is seen that the sets of input nodes are correctly inferred for most nodes if m
is large enough.

Finally, we examined the case of n = 100, K = 4, and m = 1000 x 20. In this case, the
LP-based method inferred the sets of input nodes correctly for 96 nodes using less than 5 hours
(with 1 CPU), where At = 0.005. This result demonstrates the power of the LP-based method
because we are tackling a very hard problem, inference of nonlinear systems with more than
100 x 100 x 2 parameters. '

References

[1] T. Akutsu, S. Miyano and S. Kuhara, Identification of genetic networks from a small number of
gene expression patterns under the boolean network model, Proc. Pacific Symp. on Biocomputing
4, 17-28, 1999.
[2] T. Akutsu, S. Miyano and S. Kuhara, Algorithms for inferring qualitative models of biological
networks, to appear in Pacific Symp. on Biocomputing 2000.
[3] A. Arkin, P. Shen and J. Ross, A test case of correlation metric construction of a reaction pathway
from measurements, Science 277, 1275-1279, 1997.
[4] K.P. Bennett and O.L. Mangasarian, Robust linear programming discrimination of two linear sepa-
rable sets, Optimization Method and Software 1, 23-34, 1992.
[5] J.L. DeRisi, V.R. Lyer and P.O. Brown, Exploring the metabolic and genetic control of gene expres-
sion on a genomic scale, Science 278,680-686, 1997.
(6] T. Chen, H.L. He and G.M. Church, Modeling gene expression with differential equations, Proc.
Pacific Symp. Biocomputing 4, 29-40, 1999.
[7] P. D’haeseleer, X. Wen, S. Fuhrman and R. Somogyi, Linear modeling of mRNA expression levels
during CNS development and injury, Proc. Pacific Symp. Biocomputing4, 41-52, 1999.
[8] D.H. Irvine and M.A. Savageau, Efficient solution of nonlinear ordinary differential equations ex-
pressed in S-system canonical form, STAM J. Numer. Anal. 27, 704-735, 1990.
[9] S. Liang, S. Fuhrman and R. Somogyi, REVEAL, a general reverse engineering algorithm for infer-
ence of genetic network architectures, Proc. Pacific Symp. on Biocomputing 3, 18-29, 1998.
[10] H.H. McAdams and L. Shapiro, Circuit simulation of genetic networks, Science 269, 650-656, 1995.
[11] Smart Optimizer User’s Guide, SAITECH Inc. (http://www.saitech-inc.com/math.htm), 1998.
[12] D. Thieffry and R. Thomas, Qualitative analysis of gene networks, Pacific Symp. on Biocomputing
3, 77-88, 1998.
[13] D. Tominaga and M. Okamoto, Design of canonical model describing complex nonlinear dynamics,
Proc. IFAC Int. Conf., CAB7, 85-90, 1998.
[14] C-H. Yuh, H. Bolouri and E.H. Davidson, Genomic Cis-regulatory logic: experimental and compu-
tational analysis of a sea urchin gene, Science 279, 18961902, 1998.



