BEET AL MEmRmR 28— 1
(2000. 2. 7)

Memory Conscious Scheduling
for Cluster-based NUMA Multiprocessors

Takahiro Koita!, Tetsuro Katayama't, Keizo Saisho tf and Akira Fukuda't
f': Osaka Sangyo University
! Nara Institute of Science and Technology

This paper proposes several policies for cluster-based NUMA multiprocessors that are com-
binations of a processor scheduling scheme and a page placement scheme and investigates
the interaction between them. The simulation results show that policies that cooperate to
employ the home-cluster concept achieve the best performance. The paper also compares
the best of the proposed policies with other existing dynamic processor scheduling policies.
Based on our study reported here, the best policy is found to perform better than other
existing policies.

75 AZEI NUMA ~VF7 0%y Hi2BiT3
AEVHRAAr Y a—1) v 7 HR

AV B T FLLBER T, R =, dgE St
P KIREE RS T8 BHY 27 4 T¥ER
o g% BRSO R SRR R AT A

AFRTHE, 77 X5EO NUMA SVF TRy HERRLLT, 5—AZTAFEVIBAE S &
RTHEyFRT T2 =) YT HRER-T TV =R 27 M FRSBAGCEET 2 FHIConTRE
T%.7Utv%1#91~uVﬁﬁﬁt&~§7b~xxyPﬁﬁ%%h?hﬂi&%thf?u&
C MAREMAGDELEDE 1 20KV ELTHR). WHROVL Or0lAEbitrEs, 2
RIFROFIMEEZ Y IaL -V av T DFlT A, Y Ial—YaviERtd, TOvvHASr T a—
Vo ZHRER=T TV~ AR P FRD R~ A7 525 2 plncBRBIET 5 520, oA
NYE= T ZEADE =Ny B A%, FHIEERMIEC RS, 510, BRFRXEEROE
%&7U&7%x&§awuyfﬁﬁkmﬁL,xﬁ%ﬁﬂﬁf&r@ﬁﬁ%ﬁuswf,ﬁ%%$§
{TUEAEETL, FHEERMEYETLZ LR,

1 Introduction sor (in the same cluster) to avoid the higher cost
of remote memory access. Therefore, the processor

Non-Uniform Mermory Access (NUMA) multipro- scheduling scheme and the page placement scheme

cessors have great potential for achieving high per-
formance. These machines are frequently used as
compute servers with multiple parallel processes ex-
ecuting at the same time.

For such multiprogrammed environments, the
processor scheduling scheme, which is responsible
for processor allocation, significantly affects the ef-
ficiency of process execution. In addition, the page
placement scheme, which is responsible for page al-
location, is also important because the memory ac-
cess cost is non-uniform due to distributed memory
modules. This non-uniformity of memory access
cost is an almost inevitable feature of NUMA mul-
tiprocessors. Ideally, it is preferable that virtual
pages accessed by a processor are local the proces-

should work together to assure this locality of mem-
ory access.

In this paper, we propose several policies for
cluster-based NUMA multiprocessors(Figurel) that -
consider the combinations of a processor scheduling
scheme and a page placement scheme. We intro-
duce the concept of a home-cluster, which is the
basis of some of our proposed policies.

2 Proposed Schemes

In this section, we propose several processor
scheduling schemes and page placement schemes
and consider their combinations.

__1_

Cluster 1 Cluster 2
Cadh:
® ® rechos | ® ® ®
s
1y] [N]

[
Local Access]]
*

Memor

Remote Access

[IN (Interconnection Network)

® : Processor : Cache

Cluster-based NUMA multiprocessor

Figure 1:
model

2.1 Home-Cluster

Before describing each scheme, we need to intro-
duce the concept of a home-cluster. The basic idea
of introducing the home-cluster is to reserve one
cluster for one process-to allocate processors and
physical pages in the cluster. Reserving a cluster
allows only one process to use the processors and
the memory module in the cluster. We call the
cluster reserved for a process the home-cluster of
the process.

2.2 Processor Scheduling

We employ two-level scheduling as the basic
scheduling framework [2, 4], which consists of a
kernel scheduler and user schedulers. We focus
on the schemes employed by the kernel sched-
uler. The user schedulers employ the First-
Come First-Served (FCFS) scheme. The proces-
sor scheduling scheme determines processor alloca-
tion/deallocation to/from processes and threads in
the processes. Here we explain the common sched-
uler actions for all processor scheduling schemes.
When a process is created or threads in a process
are forked, the process issues a processor-allocation
request to the kernel scheduler if not enough pro-
cessors are allocated to the process. After receiving
the request, the kernel scheduler tries to allocate
processors according to the following base priority.
In this priority, a “free processor” means a pro-
cessor that is not allocated to any process, and a
“before-processor” of a process means a free pro-
cessor that was allocated to the process before the
latest deallocation.
[Base priority]
1. The before-processors of the process
2. Free processors in the cluster having the most
processors allocated to the same process
3. Free processors in the cluster having the most
before-processors of the process
4. Free processors in the cluster having the most
free processors

From the viewpoint of processor allocation rather
than processor deallocation, we consider two classes
of processor scheduling schemes: the cluster-free
scheme and the home-cluster scheme. We also con-
sider three types of cluster-free schemes and two
types of home-cluster schemes.

2.2.1 Cluster-Free Schemes

The cluster-free scheme is the simplest implemen-
tation of the dynamic processor scheduling scheme.
Under the cluster-free scheme, the scheduler does
not consider the locations of processors. There-
fore, all free processors can be allocated to any pro-
cess according to the base priority described above.
We consider three types of cluster-free schemes with
different actions for processor deallocation.

(a) Release Scheme
The release scheme is the simplest form of the
cluster-free scheme. All free processors can be real-
located to any process. In addition to free proces-
sors, idle processors can also be reallocated.

(b) Hold Scheme

The hold scheme is the same as the release scheme
except for how it handles idle processors. All free
processors can be allocated to any process in the
same way as the release scheme. However, under
the hold scheme idle processors are not reallocated
to other processes but are kept for the process to
which the processors were first allocated.

(c) Partial-Hold Scheme

The partial-hold scheme has intermediate charac-
teristics between the release and hold schemes. Un-
der the partial-hold scheme, when a processor allo-
cated to a process becomes idle because there are
no runnable threads in the process, the processor
is not released from the process if the processor be-
longs to the home-cluster of the process. This works
in the same way as the hold scheme. However the
processor does not belong to the home cluster of the
process, the processor is released and free for use,
as in the release scheme.

2.2.2 Home-Cluster Schemes

The following two schemes are based on the con-
cept of the home-cluster. Focusing on the home-
cluster implies that the scheduler action of the
home-cluster scheme is different from that of the
cluster-free scheme for allocation; processor allo-
cation priority under the home-cluster schemes is
different from that under the cluster-free schemes
using the base priority only.

The home-cluster scheme employs the concept of
the home-cluster for processor allocation. On the
other hand, the cluster-free schemes do not take into
account the notion of the home-cluster in allocation.

(d) Basic-Home Scheme

The basic-home scheme is the simplest form of
the home-cluster scheme. Under the basic-home
scheme, free processors are allocated to a process
according to the priority described above; first free
processors in the home-cluster of the process and
second free processors in the base priority except
ones belonging to other home-clusters. Thus, free
processors in the home-cluster are given the highest
priority as candidates for processor allocation.

(e) Slide Scheme

The slide scheme is the same as the basic-home
scheme except for thread handling when a proces-
sor in the home-cluster completes the execution of
a thread in the owner process and becomes idle. In
this case, if there is a thread in the owner process
running on another cluster rather than on the home-
cluster, the thread is migrated to the idle processor.
The slide scheme prefers using the home-cluster
more than the basic-home scheme does. Thus, the
processors in the home-cluster are more likely to
be used.

2.3 Page Placement

Here, we describe the alternatives for the page
placement scheme, which determines which physi-
cal memory module will be used to load a fetched
page. We consider the following two schemes for
the page placement scheme.

(a) Distributed Scheme
Under the distributed scheme, when a page fault
occurs at a processor, the virtual page is loaded
into the memory module of the cluster to which the
processor belongs.

(b) Concentrated Scheme

In contrast to the distributed scheme, the concen-
trated scheme is designed with. the notion of the
home-cluster. All virtual pages of a process are
loaded into the memory module in the home-cluster
of the process. Under this scheme, if a thread in a
process is executed on a processor that does not be-
long to the home-cluster of the process, the thread
causes remote memory access. However, by migrat-
ing this thread to the home-cluster, this kind of
remote access can be avoided.

2.4 Summary of Policies

By combining the processor scheduling schemes and
the page placement schemes described above, the
following ten policies are obtained (Table 1).

Table 1: Summary of policies

Processor

Scheduling
Page
Placement

Home~Cluster
Scheme
Slide
(HS)
HS-Dist

Cluster—Free
Scheme
Hold

(FH)

FH-Dist

Basic~
Homa (HB)

HB-Dist

Partial-
Hold (FP)

FP-Dist

Rolease
(FR)

FR-Dist

Distributed
(Dist)
Concentrated
{Con)

FR-Con FH-Cen | FP-Con | HB-Con H8§-Con

3 Experiments

Here we evaluate the proposed policies by simula-
tion experiments. Through all simulation experi-
ments, the hardware configuration is fixed: 64 pro-
cessors and 16 clusters. The ration of memory ac-
cess cost is a low type ((Ocache : Olocal @ Oremote)
= (1: 1.3: 4.8)). Ocsche, Otocat 30d Oremore de-
note the memory access cost for cache, local mem-
ory and remote memory respectively. More details
of the parameters can be seen in [4].

3.1 Comparison of policies

We first examine the ten combination policies un-
der a low access cost ratio: (Ocance @ Olocar :
Oremote) = (11 1.3 : 4.8). Figure 2 shows the
mean response time versus load level, respegtively.
The load level, which is calculated from a process
creation interval, is an index value used to estimate
system load. If a process creation interval is used
as the x-axis, identifying whether the system load
is low or high is difficult. A load level beyond 100%
does not always mean that the system is congested.

Figure 2 shows " that when the load level is low,
the difference between the policies is small. As
the load level increases, the response time with
the home-cluster policies (HB, HS) becomes shorter
than the mean response time with the cluster-
free policies (FH, FR, FP). Among the cluster-free
policies, the difference between the concentrated
(Con) policies and the distributed (Dist) policies is
small. In contrast to the cluster-free policies, among
the home-cluster policies, the concentrated poli-
cies (HB-Con, HS-Con) give better performances -
than the distributed policies (HB-Dist, HS-Dist).
The HS-Con gives the smallest mean response time
among all combination policies.

Figure 3 shows the mean response time versus the
average number of threads forked at a time, where
the load level is 75%. When the number of forked
threads is small, the difference among the policies is
small except for HS-Con and HS-Dist. The HS-Con
policy gives the smallest mean response time over
the entire range of the number of forked threads.
With HS-Con, the processor scheduling and page
placement schemes are designed to implement the

1.OE+06

8.0E+05

6.0E+0S

Mean Response Time

4.0E+0S

2.0E+05

120
Load Level (%)

Figure 2: Mean response time vs. load level with

low access cost ratio

4.SE+05

&B:FH Con.
g 408405 | SR e Dist. @
; 3.5E+05
2
& 3.0E+05 |
&
5 2.5E+05
g
= 208405

1.5E+05 . -
10 20 30 40 50 60

No. of Threads
Figure 3: Mean response time vs. the number of
forked threads with low access cost ratio

home-cluster concept cooperatively. The collabo-
ration of the schemes reduces the remote access
overhead and reduces the mean response time even
when the number of forked threads is changed.

3.2 Comparison of best policy with
other existing policies

We compare the best of the proposed policies
(HS-Con) with other existing policies: the Equi-
partition policy (EQUI) [1], the Dynamic pol-
icy (DYN) [3], and the Cluster-limited policy
(LIM) [4]. These are combination policies, that
consist of the existing processor scheduling scheme
and a page placement scheme. For EQUI, DYN,
and LIM, we employ the distributed scheme as
a page placement scheme because it is used as
the conventional page placement scheme. In these
policies, processor scheduling and page placement
schemes are designed separately and do not con-
sider the home-cluster.

Figure 4 indicates that the mean response time
with HS-Con is better than that with the other poli-
cies. HS-Con can still execute processes more effi-
ciently than the other policies because it can allo-
cate an adequate number of processors and keep
high access locality.

1.0E+06

X:EQUI
«:DYN
2 ®:iLIM
& soE+0s O':Hs~Con
2
= e S
& 6.0E+05
3
ol
§ 4.omv0s
=
2.0B+05 . : : :

0 20 40 60 80 100 120
Load Level (%)

Figure 4: Mean response time for each policy

4 Conclusion

We focused on the interaction between processor
scheduling and page placement schemes and pro-
posed several policies that are combinations of the
two types of schemes. Furthermore, we introduced
the concept of a home-cluster, which is a cluster
reserved for a particular process.

These policies were evaluated through simula-
tion experiments. Our results show that the best
performance is achieved by the policy in which
both the processor scheduling and page placement
schemes cooperatively 1mplement the home-cluster
concept. The proposed policy is superior to other
existing policies in which the processor scheduling
scheme and the page placement scheme work inde-
pendently. :

References

[1] A. Gupta, A. Tucker, and S. Urushibara, “The im-
pact of operating system scheduling policies and
synchronization methods on the performance of
parallel applications,” Proc. of the 1991 ACM SIG-
METRICS Conf. on Measurement and Modeling of
Computer Systems, pp.120-132, 1991.

[2] T.Koita, T. Katayama, K. Saisho, and A. Fukuda,

" “Processor scheduling with page placement for
cluster-based NUMA multiprocessors,” Proc. of
the Int’l Conf. on Parallel and Distributed Pro-
cessing Techniques and Applications (PDPTA’99),
pp-539-545, 1998.

[3] C. McCann, R. Vaswanim, and J. Zahorjan, “A
dynamic processor allocation policy for multipro-
grammed shared-memory multiprocessors,” ACM
Trans. on Computer Systems, Vol.ll, No.2,
pp.146-178, 1993.

[4] Y. Ohishi, K. Saisho, and A. Fukuda, “Per-
formance evaluation of two-level scheduling algo-
rithms for NUMA multiprocessors,” IEICE Trans.
Information and System, Vol. J80-D1, No.1, pp.31-
41, 1997.

