BHET L EMEFR 29— 3

(2000. 5. 12)

PAC Analysis of Learning Weights
in Multi-Objective Function

by Pairwise Comparison
Ken Satoh
North 13, West 8 Sapporo 060-8628, Japan
Hokkaido University
abstract

This paper presents a theoretical analysis for a learning method of weights in multi-objective function. Although
there are several learning methods proposed in the literature [Dyer79, Srinivasan73a, Srinivasan73b, Tamura85],
none has yet been analyzed in terms of data complexity and computational complexity.

This paper steps toward this direction of giving a theoretical analysis on learning method for multiple objective
functions in the viewpoint of the computational learning theory. As the first step, this paper presents a theoretical
analysis of learning method of weights from pairwise comparisons of solutions[Srinivasan73a, Srinivasan73b).
In this setting, we show that we can efficiently learn a weight which has an error rate less than € with a probability

more than 1 —§ such that the size of pairs is polynomially bounded in the dimension, n for a solution, and €

—1

and 67!, and the running time is polynomially bounded in the size of pairs.

1 Introduction

In engineering domain, It is frequent that there
are many objectives required to be optimal. For
example, in making products, we have at least the
following objectives:

1. Shortening a duration of making products.
2. Having lesser workers to make products.
3. Decreasing burden of workers.

4. Decreasing stocks of materials.
5

. Making products as soon as requests come.

However, it is rare that an optimal solution is
obtained in which every objective takes an opti-
mal value; we often encounter situations where
some of the objectives conflict each other. In the
above example, to shorten a duration of making
products and to have lesser workers, we might
have to increase burden of workers, and to make
products just in time, we might have to store some
stocks of materials beforehand.

In such situations, all we can hope is to obtain
a Pareto solution in which a value of an objective
cannot be enhanced without sacrificing a value
of another objective. However, there are usually
many Pareto solutions and therefore choosing a
sclution is not a easy task. To solve this problem,
we can sometimes use user’s preferences over ob-
Jjectives. In other words, if there are conflicting
objectives, then we choose a preferable solution
based on these preferences.

This situation can be regarded as an optimiza-
tion problem for combination of objectives and
preferences. But, this optimization problem is dif-
ferent from the ordinal optimization problem in

operations research since in the above situation,"

an object function is unknown. One approach

for this problem is to learn multiple objective
functions [Dyer79, Srinivasan73a, Srinivasan73b,
Tamura85] where we decide the weights of com-
bination of original objective functions to create
“real” objective function.

It is very useful especially when we would like to
transfer expert’s preference into an expert system
doing the above optimization problem in place of
the expert: Unfortunately, however, the above re-
searches only provide methods and evaluate em-
pirically, so there are no theoretical analyses in the
viewpoint of data complexity and computational
complexity. Although their contributions are im-
portant, it is also important to know whether
their approaches are computationally feasible or
not, since a system using the above methods must
learn in a permissible amount of data and time.

This paper steps toward this direction of giv-
ing a theoretical analysis on learning method for
multiple objective functions in the viewpoint of
the computational learning theory. As the first
step, this paper presents a theoretical analysis of
learning method of weights from pairwise compar-
isons of solutions[Srinivasan73a, Srinivasan73b].
The method has been applied to measurement
of managerial success[Srinivasan73c] and prefer-
ence of university administration [Hopkins77] and
showed to be effective to some extent.

Our analysis for the method is an extension
of the analysis in learning weights in similar-
ity function in case-based reasoning{Satoh96] and
learning preference relation in cardinality-based
circumscription[Satoh00]. The analysis is based
on PAC (probably approximately correct) learn-
ing [Valiant84]. In [Satoh96], we use relative dis-
tance information which tells if the distance be-
tween case A and case B is less than the distance
between case A and case C and the algorithm

— 9 —

learns weights in a weighted Euclidean distance of
the cases. In [Satoh00], we apply the above idea
to learning preference relation for logical interpre-
tations by regarding an logical interpretation as
a case and a preference measure as a similarity
measure between the interpretation and the most
preferable interpretation. In this paper, we ex-
tend our previous results to learn weights of multi-
objective functions of the more general form than
those of [Satoh96] and [Satoh00].

2 Formal Analysis of the

Learning Method

Let A € R™ be a solution and u;(4)(1 < i <
t) be objective functions such that ¢ is bounded
by a polynomial of n and u;(A) are calculated
in the time bounded by a polynomial of n. Let
preference function F(A, W) be of the form

F(AW) = Z Wi * Fy(u1(A), ..., u; (A))

where m is bounded by a polynomial of n, and W
is a weight vector (Wi, ..., Wy,), and F; is a poly-
nomially evaluatable function of u1(A), ..., u;(4).
Note that since uj(A), ..., us(A) are calculated in
the time bounded by a polynomial of n, each
F;(uy(A),...,ut(A)) can be calculated in the time
bounded by a polynomial of n. We assume
that there exists a true weight vector W* =
Wy, ..., Wr).

Then, the learning problem is to find a hypo-
thetical weight vector W which approximates W*
as possible. To do that, we provide our version of
“approximation” of the true weight as follows.

Let P be any probability distribution over n-
dimensional Euclidean space, R™*. Then, a set of
different pairs between W and W* is defined as
follows:)

diff (W, w*) & {(A, B) € R* x R"|
(F(A,W)> F(B, W)AF(A,W*)< F(B,W*))V
(F(A, W) < F(B,W)\F(A, W*)> F(B,W*))}

The above set consists of solution pairs (A, B)
such that (1) a solution A is actually preferable
to the other solution B, but from the hypothesis
weight, B is preferable to A or, (2) vice versa.

W is said to be an ¢-approzimation of W*
w.r.t. different pairs for P2, if the probability of
P2(diff (W, W*)) is at most e. We call € an error
rate.

The following theorem shows that this frame-
work is polynomially PAC-learnable.

Learn(e,d,m)
e: accuracy, é: confidence, m: the number of
weights in the preference function
begin

Receive the definition of the preference func-
tion F(A, W) with W unknown

and max(élogzg, -—n—llogg E;-) pairs of solu-
tions ¢ ¢ ¢
and the results of comparison from the teacher.
for every pair (4, B)
if A < B then add the following inequality
to the constraint set:

F(A,W) < F(B,W)

if B < A then add the following inequality
to the constraint set:

F(B,W)+1< F(A,W)

Get consistent values for the above constraint
set by linear programming
and output W.

end

Figure 1: Learning algorithm

Theorem 1 There exists a learning algorithm
which satisfies the following conditions for any
probability distribution over R, P, and an ar-
bitrary constants € and § in the range (0,1):

1. The teacher selects a true weight vector W*
from [0, 00)™.

2. The teacher gives the definition of a prefer-
ence function F(A, W) with W unknown and
gives N pairs according to P? with the results
of pairwise comparison defined by W* to the
algorithm.

8. The algorithm outputs a hypothetical weight
vector W and the following hold.

e The probability that W is not an e-
approzimation of W* wir.t. different
pairs for P? is less than §. We call §
a confidence.

e The size of required pairs N for learning
is bounded by a polynomial in n, ¢! and
§~1, and so is its running time.

We show a learning algorithm of weights by binary
comparison mentioned in the above theorem in
Figure 1.

3 Experimental Results

We now show an experimental result under the
following setting ! .

1. F(A, W) is defined as follows:
F(AW) =) WixA.
=1

In other words, t = 1, u1(A) = 4, m = n,
and F;(uy(A)) = A.

2. We use a randomized function to produce n
values ranging over (0, 1) and regard it as a
true weight vector W*.

3. We use a randomized function to produce n
values ranging over (0,1) and regard it as a
solution. We repeat this 2 x N times to pro-
duce N pairs of solutions.

4. Using the above algorithm, we learn a weight
vector by using linear programming.

5. For the learned weight, we produce 10,000
test pairs randomly and calculate an error
rate. :

6. We repeat 100 times above and take the av-
erage of error rates.

We use UltraSPARC-IIi(440MHz) processor
with 1GB memory for experiments.

Figure 2 shows relationship between the num-
ber of objective functions and the square root of
learning time of weights. Since the graph is al-
most linear, the order of the learning time is O(n?)
where n is the number of objective functions.

Figure 3 shows relationship between the num-
ber of objective functions and the error rate. The
number of objective functions is almost propor-
tional to the error rate.

Figure 4 shows relationship between the size of
training pairs and the inverse of error rate. This
graph is almost linear, so the size of training pairs
is almost inversely proportional to the error rate.

Figure 5 indicates that the required total size

n .
on average in or-

of training pairs is almost

der to obtain the average ergor rate, ¢, where C
is a constant. From the graph, C' ~ 0.488. This
size for training pairs is smaller than the size in
our PAC-learning analysis. It is probably because
in PAC-learning analysis, we consider the worst
case, while in the experiment, we assume that the
probability distribution is fixed where the behav-
ior may not be so pathological.

To summarize, the experiments show that the
computational complexity of learning weights is

! This is another interpretation of the experiment
showed in [Satoh00].

» #training pairs)=1000
155 o #(training pairs)=2000
» #(training pairs)=3000
o #(training pairs)=4000
A #(training pairs)=5000
& #(training pairs)=6000
* #(training pairs)=7000
o #(training pairs)=8000
x #(training pairs)=9000
10 *#(training pairs)=10000

sqrt(Learning Time) [sqrt(sec)]

0

0 20 40 60 80 100
Number of Objective Functions
Figure 2: Relationship between n and

v LearningTime

O(n?) and the data complexity is O(n/e). We
believe that the results are very encouraging.

4 Conclusion

This paper presents a computational analysis of
a learning method for weights in multi-objective
functions which uses pairwise comparisons. The
analysis shows that the learning method can poly-
nomially PAC-learn the weight. Therefore, we can
say that the learning method is feasible in terms of
the worst-case analysis in computational learning
theory.
We pursue the following as future works.

1. Applying our method to real application do-
main.

2. Making our framework robust to errors on
comparison.

3. Analyzing our method theoretically when the
distribution is fixed to explain the experiment
result in this paper.

Reference

[Blumer89] Blumer, A., Ehrenfeucht, A., Haussler,
D., and Warmuth, M. K., “Learnability and the
Vapnik-Chervonenkis Dimension”, JACM, 36, pp.
929 - 965 (1989).

[Dyer79] Dyer, J. S., and Sarin, R. K., “Measurable
Multiattribute Value Functions”, Operations Re-
search, Vol. 27, No.4, pp. 810 - 822 (1979).

[Hopkins77] Hopkins, D. S. P., Larrenche, J. C., and
Massy, W. F., “Constrained Optimization of a
University Administrator’s Preference Function”,

© #(training pairs)=1000
o #(training pairs)=2000
@ #(training pairs)=3000
o #(training pairs)=4000
0.04- 4 #(training pairs)=5000
2 #(training pairs)=6000
* #(training pairs)=7000
< #(training pairs)=8000
x #(training pairs)=9000
© + #(training pairs)=10000
k-]
~
=
e
B
bt
= 0.02
0.00 T T
20 40 60 80 100
Number of Objective Functions
Figure 3: Relationship between n and ¢
o
°
10004 ° n=20
o n=40
B n=60
o n=80
8004 s n=100
°
®
]
& 600+
Tt
]
: C
g
: o
400 d
200 —
0 v T T T T
[} 2000 4000 6000 8000 10000

Training Pair Size
Figure 4: Relationship between number of train-
ing pairs and e~?

@ge 0

10000

8000)

6000 0

Training Pair Size

4000 -

2000

0
0 5000 10000 15000 20000

(Number of Propositions) / (Error Rate)
Figure 5: Relationship between n/e and number
of training pairs

Management Science, Vol. 23, No.11, pp. 1161 -
1168 (1977).

[Karmarker84] Karmarkar, N., “A New Polynomial-
time Algorithm for Linear Programming”, Combi-
natorica, 4, pp. 373 — 395 (1984).

[Satoh96] Satoh, K., Okamoto, S., “Learning Weights
in a Similarity Function from Distance Informa-
tion”, Journal of Japanese Society of Artificial In-
telligence, Vol. 11, No.2, pp. 238 — 245 (1996) (in
Japanese).

[Satoh00] Satoh, K., “PAC-learning of Preference Re-
lation over Interpretations in Lazy Nonmonotonic
Reasoning”, H. Motoda and S. Muggleton (eds).,
Machine Intelligence 15, Oxford University Press.
(to appear) (2000).

[Srinivasan73a) Srinivasan, V. and Shocker, A., “Lin-
ear Programming Techniques for Multidimensional
Analysis of Preferences”, Psychometrika, Vol. 38,
No.3, pp. 337-369 (1973).

[Srinivasan73b] -Srinivasan, V. and Shocker, A., “Es-
timating the Weights for Multiple Attributes in a
Composite Criterion using Pairwise Judgments”,
Psychometrika, Vol. 38, No.4, pp. 473-493 (1973).

[Srinivasan73c] Srinivasan, V., Shocker, A., and We-
instein, A. G., Measurement of a “Composite Cri-
terion of Managerial Success”, Organizational Be-
havior and Human Performance, Vol. 9, pp. 147 ~
167 (1973).

[Tamura85] Tamura, H. and Hikita, S., “An Interac-
tive Algorithm for Identifying Multiattribute Mea-
surable Value Functions based on Finite-Order In-
dependence of Structural Difference”, Transactions
of SICE (in Japanese), Vol 29, No. 11, pp. 62 - 68
(1985).

[Valiant84] Valiant, L. G., “A Theory of the Learn-
able”, CACM, 27, pp. 1134 ~ 1142 (1984).

