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Abstract

The local search with orthogonal design of experimerit in its neighborhood determination (ODLS) out-
performs the local search with the conventional neighborhood when the objective function includes noise.
This models practical optimization problems that contains uncontrolled or unobserved variables. ODLS
is robust and efficient since it shares all evaluations for direction determination of each variable. We
illustrate the characteristics and demonstrate its performance in simple quadratic function plus random

noise, and discuss their improved capability from the conventional local search.

1 Introduction

Local search (LS) is the basic algorithm when
we solve optimization problems, which contain
e.g. quasi-Newton method with definite differ-
ence approximation[l], simulated annealing[2]
and tabu search[3]. Multi-start local search
(MLS), e.g. genetic algorithm[4], runs multiple
searches in parallel, and sometimes exchange
search reports, to score the excellent perfor-
mance and quality. Function optimization, e.g.
sequential quadratic programming and conju-
gate gradient method, solve problems whose
derivatives are available or easily estimated.
LS also solves ones whose derivatives are un-
available, such as integer programming, combi-
natorial optimization, and black-box optimiza-
tion. To our knowledge, function optimization

methods like conjugate gradient method have
never tried to solve protein folding optimiza-
tion problems[5, 6], since its derivatives are
hard to describe. Whereas, several LS such
as genetic algorithm([7] tried to solve it. Prac-
tical optimization problems often ignore sev-
eral variables which may affect the objective
function, since they cannot be controlled or
observed. It can be modeled by the objective
function with noise, which is another example
of the function whose derivatives are unavail-
able.

LS usually consists of four stages: (1) deter-
mination of the initial point; (2) definition of
the neighborhood points of the current point
and their evaluation; (3) replacement of the
current point; and (4) decision of the termi-
nation of the search. LS repeats (2) neighbor-



hood definition plus evaluation, and (3) cur-
rent point replacement, to proceed the search.
We introduce orthogonal design of experiment
(OD)[8] to the neighborhood definition, as well
as singular factor analysis based on OD to the
current point replacement.

LS sometimes employs a simple determina-
tion for its neighborhood points (central differ-
ence approximation): one variable changes by
plus or minus one unit, keeping the other vari-
ables unchanged. Let us explain this method
using an example of the protein folding opti-
mization problem of the length 30 (which means
30 dihedral angles). A unit of the dihedral an-
gle is 5 degree, thus each variable (dihedral
angle) varies 72 discrete values. The current
point is set at (z1,%2,...,230). Therefore, the
next current point is chosen out of 60 points.
- This method examines biased 60 points out of
230 = 1 billion candidates. Whereas, OD ex-
amines non-biased 32 points. Every point con-
tains 30 variables each of which is minus-point
(=5) or plus-point (+5), such that every vari-
able has 16 plus-points and 16 minus-points,
and all two variable-pairs have 8 plus-plus, 8
minus-plus, 8 plus-minus, and 8 minus-minus
point pairs. Therefore, we can estimate the
better direction (plus or minus) by comparing
the means of the evaluation of the 16 plus- and
the 16 minus-points. It stabilizes direction de-
terminations of this local search.

This paper shows the LS using OD and par-
tial OD in Section 2, illustrates their charac-
teristics and demonstrates its performance in
simple quadratic function plus random noise in
Section 3, and discusses their improved paral-
lel processing capability from the conventional
local search and future work in Section 4.

2 LS using OD

OD is applied to the second and third stages
of LS using the following 6 steps:

s1: build a 2-level n-variable OD;
s2: substitute 2 levels by +d and —d to de-
fine the neighborhood points;

s3: evaluate the objective function at each
neighborhood point;

s4: calculate the means of +d and —d of each
variable from all neighborhood points;

s5: choose the next value at each variable
based on these means; and

s6: replace the current point.

(s1) How to build OD:
(M

The number of points is m = 27 where
2971 <n < 29, q is an integer, thus both
n and m are represented in ¢ digits of
binary or gray code.

The level L;; of the i-th variable of the
j-th point is determined by the gray code
representation of ¢ (gogi . .. gg—1) and the

binary representation of j (bgby ... bg1):

(2)

g—1

Lz'j = mOdZZ gsbq—s—l

5=0

(1)

(s2) How to define neighborhood points N;
(f(N;) is evaluated at m neighborhood points):

N; = (Njo,Nj1,.- s Nj(n1))
W = { i =0

z;+d (Lij = 1)
(s4) The 2-level OD is built such that every
variable has the same number (m/2) of plus-
and minus-neighborhood points. Thus we can
compare the means of neighborhood points for
i-th variable (u} and ul).

()

9 m—1
W= — % A~ Lij))f(N;)  (3)
N 9 m—1
peo= Z Li; f(N;)

(s5) p} and p] are compared considering a
constant B to obtain choices of the direction
at ¢-th variable e; as follows (an example of
maximization):

+d (g +B<pf)
—d (uf + B <p)
0 (otherwise)

(4)



B might be determined with respect to the
variances of +d and —d, however, B is treated
as a previously determined constant.

(s6) Thus the level of each variable e; is de-
termined as e; = +d, 0 or —d, to replace the
current point. '

3 Experiment

3.1 Local searches

We briefly describe four local searches consid-
ered in this paper (which are called SD, SDI,
ODLS, and P-ODLS), their determinations of
neighborhood points and the replacements of
the current point. The current point is de-
scribed as (21,%2,...,%s), unit d is common
to every variable and the following definitions
are for maximization problems.

SD determines the direction using the single-
variable changed neighborhoods (central differ-
ence approximation). It evaluates 2 points ( fz-+
and f;) for i-th variable, as SW does. Then
SD determines the direction e by Eq.(5), and
replaces the current point.

+d (fF > f7)
—d (fz+ < fiw)

SDI determines the direction using the iter-
ated evaluation of single-variable changed neigh-
borhoods. It evaluates each point & times where
k is a previously determined constant. SDI
then determines the direction e = (e1,...,en)
by these means and replaces the current point.

ODLS determines the direction using OD.
See Section 2.

P-ODLS determines the direction using
part of OD. It builds 2-level n-variable OD,
selects E points randomly out of the OD to
make points PJT" where PZ';' = L;;, and provides

(5)

1

its reverse points P;” where P;; =1—Lj, such
that the occurrences of Pj; =0 and F;; =1 are
the same for each ¢ where P; = PJT" +P; . Thus,
P-ODLS neighborhood points N; are defined

by Eq.(6):

Nj;:{

zi+d (Pj=1) (6)

P-ODLS evaluates the objective function f(N;)
at these 2F neighborhood points, so that we
can obtain the means of neighborhood points
for i-th variable (uf and p; ). Then, P-ODLS
chooses levels by Eq.(4) and replaces the cur-
rent point.

3.2 Quadratic function with noise

This experiment uses a quadratic function with
random number:

n

) = =Y [(2i—10)’+R]

=1

maximize

where n=100 and R is a random integer (0 <
R<1,or 0<R<99). The unitis d=1, and
the initial point is generated by random integer
(~50 < z; < 50).

SD and SDI: SD is unstable since it deter-
mines the direction of each variable by only 2
points. SDI repeats evaluation k times for each
point. If n =100 and k=5, 1000 evaluations
are executed per iteration. Figure 1 shows the
relations of iterations (x-axis) and f! (y-axis)
of SD (k = 1) (R1S1), SDI of k = 5, (R1S5),
and k=10 (R1S10), where Ris 0 or 1in 1/2
probability.
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Figure 1: SD and SDI

ODLS and P-ODLS: Figure 2 shows the
relations of iterations (x-axis) and f1 (y-axis)
of ODLS of B=1 (0OB1), P-ODLS of E=10
(E10B1), E = 20 (E20B1), E = 50 (E50B1),
and SD (S1) for comparison, where R is 0 or



1 in 1/2 probability. E50B1 outperforms S1,
which implies 100 points per iteration outper-
forms 200 points per iteration.
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Figure 2: ODLS and P-ODLS

4 Consideration

When the objective function has no noise, ITR’s
(the number of iterations from the same initial
point to the optimal point) of ODLS and SD
are the same. Whereas, ODLS outperforms
SD in precision when the objective function
has noise.

ODLS determines direction of each variables
using m points’ evaluations, where m is nearly
equal to the number of variables of the objec-
tive function. ODLS is robust and efficient
since all these m evaluations are shared and
used by direction determinations of all vari-
ables. SDI provides similar result, however,
it takes more evaluations than ODLS, since it
does not share any evaluations.

The objective function with noise models
the real world situation, where it does not cover
all the variables to affect the objective. ODLS
works in such situation better than SD or SDI.

5 Conclusion

The local search with orthogonal design of ex-
periment in its neighborhood determination out-
performs the local search with the conventional

neighborhood when the objective function in-
cludes noise. It determines direction of each
variables using only m points, where m is nearly
equal to the number of variables of the objec-
tive function. It is robust and efficient since it
uses all m evaluations for each variable’s direc-
tion determination. It efficiently solves practi-
cal optimization problems which are modeled
by the objective function with noise.
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