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特殊構造を有する
大規模連立一次方程式の一解法とその応用

鈴木 　誠道y 仇 　莉y

本論文では特殊構造を有する連立一次方程式の直接解法に対する一つのアプローチを提案する。こ
れは筆者らの自動倉庫システムや生産ラインなどのモデル化に現れた大規模連立一次方程式の解を効
率的に求める過程からヒントを得ている．大規模システムは多くの場合特殊構造をもつ．上のシステ
ムも特殊構造を有しており、その細部構造までフルに利用した解法を考案し効率的な解析を行つた．
そのアイデアは、連立方程式のいくつかの変数の値を既知として、他の変数をこれらの変数を用いて
表すことである．これは元の連立方程式を実質的により小規模の連立方程式群に分割することである。
この方式がより一般の特殊構造をもつ連立一次方程式にも有効に適用可能なことを例を挙げて示す．

A Uni�ed Approach for Solution of a Large System
of Linear Equations with Special Structures and its Applications

Shigemichi Suzukiy and Qiu Liy

We present here an approach for direct solution of a system of linear equations with struc-

tures. The approach is motivated by our analysis of a large scale system of linear equations

obtained in modeling systems of automatic warehousing and production lines. Large scale

systems often have special structures. The systems mentioned above have special structures.

By exploiting the structure we have developed e�cient methods of analysis. The idea is to

assume the values of certain variables known and express the rest of variables in terms of as-

sumed variables. The process is, in e�ect, to decompose the original equations into a number

of smaller scale systems. We will show that the approach can be applied to a wider class of

problems.

1. Introduction

We propose here direct solution methods for a sys-

tem of linear equations with special structures. The

work is motivated by our research on queuing-systems

analysis of serial production lines with unreliable ma-

chines and intermediate bu�ers1). The system of linear

equations derived from the analysis has a special struc-

ture2),3). We devised a method of solution for such a

system which is some generality to be applicable to

other types of problems such as the Dirichlet problem

of discrete Poisson's equation. We will show that the

present approach performs better than conventional

ones4)�7) by two examples from quite distinct origins.

2. Basic Idea

Let A be a nonsingular square matrix of the order

n and consider a system of linear equations Ax = b.

It can be easily proved that the equation can be

transformed to the following form by interchanging

rows (equations) and columns (variables) of A and

of elements of b such that super diagonal matrices

Ai;i+1(i = 1; 2; � � � ; k) are nonsingular:
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A11 A12 0 � � � 0

A21 A22 A23 0
. . . 0

...
...

. . . A(k�1);k)

Ak1 Ak2 � � � Akk

3
77775
x = b: (1)

The above system of equations has k blocks, the so-

lution vector x and the right-hand-side vector b which

consist of k subvectors x(i) and b(i)(i = 1; 2; � � � ; k).

We will try to �nd or recognize a "good" transforma-

tion in the sense that it can help to reduce the over-

all computational complexity involved in solving the

original linear equations compared with conventional

methods.

Assuming that x(1) is known, the other solution sub-

vectors x(i)(i = 2; 3; � � � ; k) can be obtained as

x
(i)

= A
�1
i�1;i(b

(i�1)
�

i�1X
j=1

Ai�1;jx
(j)
); (2)

(i = 2; 3; � � � ; k):

The solution subvectors thus obtained can be ex-

pressed in terms of x(1)as

x
(i)

= ci + Fix
(1)

(i = 1; 2; � � � ; k); (3)

where ci and Fi are de�ned recursively as
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c1 = 0; F1 = I; (4)

ci = A
�1
i�1;i(b

(i�1)
�

i�1X
j=1

Ai�1;jcj); (5)

Fi = �A
�1
i�1;i(

i�1X
j=1

Ai�1;jFj); (6)

(i = 2; 3; � � � ; k):

The values of the elements of x(1) are obtained by

substituting the expression for subvectors x(i)(i =

2; 3; � � � ; k) in (3) into the k-th block of the transformed

system and solving the derived system

kX
j=1

Ak;jFjx
(1)

= b
(k)

�

kX
j=1

Ak;jcj: (7)

The solution procedure is valid since the matrix A and

the submatrices Ai;i+1(i = 1; 2; � � � ; k � 1) are nonsin-

gular.

Whether applications of the procedure are e�ective

or not in solving systems of linear equations is heavi-

ly dependent on the special structures of the systems.

We will present two examples in the following sections

to show how the proposed method can be e�ectively

applied.

3. Applications to the Dirichlet Problem

of Discrete Poisson's Equation

Consider a �ve-point �nite di�erence approxima-

tion to the problem and partition the region into

(l + 1) � (m + 1) squares. Let ui;j be the value of

u at (i; j)-grid point, then the �nite-di�erence approx-

imation of the Dirichlet problem is described by the

following system of linear equations:2
666664

�B I 0 � � � 0

I �B I 0 0

� � �

. . .
. . .

. ..
.
..

0 0 � � � �B I

0 0 � � � I �B

3
777775
u = f; (8)

where I is a unit matrix of order l and B is an l � l

matrix shown as follows:

bi;i = 4; bi;j = �1(i = 1; 2; � � � l; ji� jj = 1); (9)

and the solution uT = (u(1); u(2); �; u(m)) and the right-

hand-side vector fT = (f (1); f (2); �; f (m)) are de�ned

by

(u
(j)
)
T
= (u1;j ; u2;j ; � � � ; ul;j)

(j = 1; 2; � � � ;m);

(f
(j)
)
T
= (f1;j; f2;j ; � � � ; fl;j)

(j = 1; 2; � � � ;m);

where each fi;j is evaluated from the boundary values

associated with the grid point (i; j).

3.1 Computational procedure

Assume that the solution subvector u(1) is known.

Then the rest of the solution subvectors can be ob-

tained as follows:8<
:

u(2) = f (1) + Bu(1);

u(j) = f (j�1) + Bu(j�1) � u(j�2)

(j = 3; 4; � � � ;m) :

(10)

The equation for u(1) can be derived from the last-

block equation of Equation(8) by substituting u(j)(j =

m�1;m) expressed as functions of u(1) in it (note here

there are only two subvectors in the last-block equa-

tion). Observe here that u(j)(j = 2; 3; � � � ;m) can be

expressed in terms of u(1) as

u
(j)

= pj +Qj�1u
(1)
(j = 1; 2; � � � ;m); (11)

where (l � 1) vectors pj and (l � l) matrices Qj are

obtained recursively as8>>>><
>>>>:

p1 = 0; Q1 = I;

p2 = f (1); Q2 = B;

pj = f (j�1) +Bpj�1 � pj�2;

Qj�1 = BQj�2 �Qj�3

(j = 3; 4; � � � ;m+ 1) :

(12)

To facilitate following discussions we will introduce a

series of polynomials Sj(v) (j = 2; 3; � � �) with a vari-

able v by recurrence relations:8>><
>>:

S0(v) = 1;

S1(v) = v;

Sj(v) = vSj�1(v)� Sj�2(v)

(j = 2; 3; � � �):

(13)

Using polynomials Sj (j = 0; 1; � � �) , u(j) can be ex-

pressed as:

u
(j)

=

j�1X
i=1

Sj�i(B)f
(i)

+ Sj�1(B)u
(1)

(14)

(j = 2; 3; � � � ;m):

Using Equations (12) and (14) we can derive the

system of linear equations for u(1) as:

�Sm(B)u
(1)

= pm+1: (15)

We wish to preserve the sparsity of matrices involved

in the computational procedure as much as possible.

For this purpose we �rst observe that the matrix B can

be transformed to a diagonal matrix D by an orthog-

onal transformation D = V TBV , where the diagonal

elements d1; d2; � � � ; dl of D are eigenvalues of B and

the i-th column vector of V is the normalized eigen-

vector corresponding to the eigenvalue di. With this

diagonalization property premultiplying both sides of

Equation (15) by V T yields

�Sm(D)V
T
u
(1)

= V
T
pm+1: (16)

The solution for u(1) can be obtained as

u
(1)

= �V (Sm(D))
�1
V
T
pm+1: (17)

The solution process for Equation (8) will be com-

plete after we substitute the expression (17) to the

�rst equation in (10) to compute u(2) and proceed to
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evaluate the rest of u(j)'s by the second equation in

(10).

At this point we will note that the eigenvalues and

eigenvectors can be explicitly given by

di = 4� 2cos(
i�

(l+ 1)
) (i = 1; 2; � � � ; l); (18)

vj;i = risin(
ij�

(l + 1)
) (i; j = 1; 2; � � � ; l); (19)

where vj;i is the j-th element of the i-th column eigen-

vector of B, and ri is the normalization constant of

the vector.

We are now in the position to clarify the whole com-

putational procedure in sequence:

� Compute eigenvalues d1; d2; �; dl and eigenvectors

V of B by Equations(18) and (19 ).

� Compute Sm(D)�1 by recursion.

� Compute pm+1 recursively by Equation(12).

� Compute u(1) by Equation (17).

� Compute u(j)(j = 2; 3; � � � ;m) by Equation (10).

4. Applications to Equilibrium-State

Equations of Queuing Systems

4.1 Model

The model is concerned with a serial production

line with unreliable machines and having intermediate

bu�ers with �nite capacities. On assumptions made

about arrivals of work pieces at the production line,

service time, time to failure, repair time at each ma-

chine, and some other operating rules of the line, the

the system can be modeled as a Markov process.

Let n be the number of machines in a produc-

tion line, Mi + 1 be the capacity of intermediate

bu�er Bi including capacity one of machine (i + 1)

(i = 1; 2; � � � ; n � 1). Let Nn(M1;M2; � � � ;Mn�1) be

the total number of the system states of the produc-

tion line, then it will be expressed recursively as:

Nn(M1;M2; � � � ;Mn�1)

= 2(M1 + 1)Nn�1(M2;M3; � � � ;Mn�1)+

+Nn�2(M3;M4; � � � ;Mn�1)

(n = 2; 3; � � �);

where N1(�) = 2;N0(�) = 0:

The number of system states blows up as n increases.

The system of equilibrium equations for the Markov

process will become as

xQ = 0; xe = 1; (20)

where Q is a matrix denoting the state-transition

rates, x is a row vector of the steady state probabili-

ties and e is a columnn vector with each of its elements

being 1.

We will now take an example. The example is for

a production line with 3 machines and 2 intermediate

bu�ers having capacities 2 for each of them. There

are 74 states in the system and the pattern of nonzero

elements of the matrix Q will be as shown in (21).
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(21)

As was pointed out in Section 1 a transformation of

Equation (20) for Q as shown in (21) is not unique.

A strategy here is to seek transformations which re-

duce the over-all computational complexity involved

for solving the original system of equations. The com-

putation includes construction of the transformation

and solution of the transformed system. While the

former may be combinatorial in nature and this may

cause di�culties, the latter can be carried out with-

out such di�culties and is easier than the former. At

present we will contented with �nding "good" trans-

formations not for general type of equations but for

speci�c type of equations. Then the construction of

"good" transformations will be much easier, even triv-

ial.

Now returning to transformation ofQ in (21), we can

easily �nd good transformations. One of such transfor-

mations which may be the simplest is to take the �rst

12 variables corresponding to the �rst 12 rows of Q

as x(1) and interchange the columns of Q. The result

of the transformation with interchanging of columns

(no interchange of rows necessary in this case)yields

matrix ~Q shown in (22).

The solution of the transformed system can be ob-

tained by the procedure described in Section 1 with

much less computation time than solving the original

system.

5. Issues of Computational Complexity

5.1 The Dirichlet problem

To simplify the evaluation of computational com-

plexity for solution of a system of linear equations, we

will take a model problem with n� n interior points.

There exists n2 equations in (8) for the model prob-

lem. There are �ve items to evaluate as pointed out

in Section 2. The asymptotic number of operations

required for each item will be:

(1) n2=2, (2) n2, (3) 3n2 ,
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(4) Computation of u(1) by Equation (17):

V T pm+1 can be evaluated with n log n operations em-

ploying FFT, premultipying this by (Sn(D))�1 re-

quires n operations since (Sn(D))�1 has been obtained

in (2) and �nally premultipying this by �V to obtain

u(1) is carried out with n log n operations employing

FFT. The total number of operations needed here is

2n log2 n.

(5) Computation of u(j)(j = 2; 3; � � � ;m) by Equation

(10):

This requires 3n2 operations since each row of B has

at most three elements.

The total number of operations for the discrete Pois-

son equation on a square with n � n interior grid

points is now evaluated as 7:5n2 asymptotically ignor-

ing 2n log2 n operations required in (4) above.

5.2 Basic scheme

To simplify evaluation of computational complexi-

ty we will take an example problem of Equation (1)

with each of k subvectors x(i) having l variable. The

total number of variables n in the system is then

n = kl. Now let C1,C2, C3, and C4 be the num-

bers of operations required for computation of each

of equations (3),(5),(6), and (7). Let � be the densi-

ty of nonzero elements in the matrices Ai;j(1 � i �

j � 1 � n� 1). Then the total number of operations

C = C1 +C2 +C3 + C4 will be approximately

C = (
4k

3
+

�k2

2
)l
3
:

If we solve the system of equations under consid-

eration by LU decompositons without making use of

the structure and the sparsity of the matrix, then the

number of operations required CLU will be approxi-

mately

CLU =
(kl)3

3
+ (kl)

2
:

Therefore

C

CLU

=
8 + k�

2k2
:

This implies that for a problem with k = 20 and

� = 0:1; C
CLU

= 0:0175 and a big reduction of compu-

tational complexity is expected in this case.

6. Conclusions

A general scheme of solving a system of linear equa-

tions with special structures is proposed and applied

to Dirichlet problms of the discrete Poisson's equation

in a rectangle and a system of equilibrium equations of

a queuing system. In the former example the number

of operations required for the Dirichlet problem with

n� n interior points in a square is proved to be 7:5n2

asymptotically compared with the estimates of 11:5n2

of the marching methods which is the fastest ever pro-

posed4). The applications to the latter example are

quite e�ective compared with conventional methos.

Applications to other types of problems are now un-

der way.
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