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Abstract Macroscopic properties of a bidirectional

associative memory (BAM) are studied within a

framework of S/N analysis called SCSNA. We ob-

tained the relative capacity, which means the relative

number of pattern pairs to be memorized and retrieved,

as 0.199N , where N means the units in the system.

We also derived dynamical properties by using the sta-

tistical neurodynamics and explained the property of

BAM from transient process to equilibrium state con-

sistently.
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1 Introduction

Bidirectional Associative Memory (BAM) pro-
posed by Kosko [5] is a kind of associative memory
neural network. The principle function of associa-
tive memory is to memorize multiple patterns and
retrieve one of them when its key pattern is given.

Autocorrelation Associative Memory (AAM),
sometimes called the Hopfield model [4], is also
a kind of associative memory. AAM retrieves a
stored pattern when the contaminated or part of
it is given as the association key. This is called ho-
mogeneous association. In contrast, BAM memo-
rizes pattern pairs and retrieves a stored pattern
pair when its pattern is given as the association
key. Thus, BAM is used as a heterogeneous pat-
tern association model.

The theoretical analysis of BAM has evolved
with a focus on the storage capacity, which means
determining how many patterns can be stored in a
network. Yanai et al. suggested that BAM could
be regarded as a kind of AAM, whose connections
are systematically removed [9]. They reported the
relative storage capacity of BAM, in which a finite
amount of retrieval error rate is allowed, to be
around 0.22N .

Recently, Tanaka et al. analyzed BAM using
a replica method (see [3]), and showed its relative
capacity to be αc = 0.1998 [8]. Analysis by replica
method is intended for the equilibrium state of
BAM, and its dynamical properties are ignored.
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Figure 1: Network structure of BAM

However, it is important to investigate the tran-
sient property of BAM.

In this paper, we analyze the equilibrium state
of BAM by Self-Consistent Signal-to-Noise Anal-
ysis (SCSNA), which is another equilibrium state
analysis method, also known as the cavity method
[7]. We show that the relative capacity is 0.199N ,
which is identical to the result of Tanaka et al.
Next, we derive macroscopic dynamical equations
from the SCSNA result, and compare them with
the computer simulation result. As a result, we
show that the dynamic behavior of the macro-
scopic quantity can be explained by our equations.

We describe BAM formulation in Section 2. In
Section 3, we give the results of SCSNA analysis
equilibrium. In Section 4, we derive the dynamical
equations. We compare the results of various step
analyses with the computer simulation result in
Section 5. Section 6 concludes our paper.

2 Formulation

BAM can be represented by a two-layered model
such as in Figure 1. In the figure, the first layer
consists of cN neural units, and the second of c̃N
units. The update rules of the ith unit in the
first layer and the jth unit in the second layer are
represened as:

x2t
i = F (

c̃NX
j=1

Jij x̃
2t−1
j ), x̃2t−1

j = F (

cNX
i=1

Jijx
2t−2
i ),

(1)
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where F (·) is the output function, sometimes rep-
resented by a sigmoid function such as tanh(·)
which we used in our simulation. We assumed
F (·) as the differentiable function in our analysis.

We adopted a synchronous update rule in each
layer, i.e., when 2t = 0, we set the ith unit in the
first layer to x0

i for all 1 ≤ i ≤ cN . In the next
step 2t−1 = 1, the whole units in the second layer
x̃1

j are updated by the right equation in (1). Then,
the whole units in the first layer are updated by
the left equation in (1). This alternate update is
a characteristic of BAM.

Jij denotes the connection weight, and we as-
sumed correlation-based learning as follows: Jij =
1
N

∑αN
µ=1 ξµ

i ξ̃µ
j , where ξµ, ξ̃

µ
(µ = 1, · · · , αN) are

pattern pairs for association and µ denotes the
pattern pair index. We assumed αN pattern pairs
were stored in the network. The quantity α(0 ∼ 1)
controls the amount of pattern pairs to be stored.
Therefore α is commonly used as the capacity in-
dex. Moreover, each pattern pair (ξµ, ξ̃

µ
) is gen-

erated by Prob[ξµ
i ] = Prob[ξ̃µ

j ] = 1/2.

3 Equilibrium state analysis

Self-Consistent Signal-to-Noise Analysis (SCSNA)
was developed by Shiino & Fukai [7]. Since SC-
SNA deals with the equilibrium state of a system,
the time index variable t becomes negligible.

Following the prescriptions of SCSNA, we in-
troduced overlaps between the equilibrium states
(x, x̃) and the µth pattern pair (ξµ, ξ̃

µ
) as follows:

mµ =
1

cN

cNX
i=1

xiξ
µ
i , m̃µ =

1

c̃N

c̃NX
j=1

x̃j ξ̃
µ
j . (2)

Following the method of S/N analysis, we need
to decouple the input into signal and noise. As-
suming the first pattern pair is retrieved, the over-
lap of pair m1 and m̃1, which indicates how well
the first pattern pair is retrieved, is the signal pat-
tern. Thus, we can derive equilibrium equation as:

xi = F (c̃m̃1ξ
1
i + zi), x̃j = F (cm1ξ̃

1
j + z̃j), (3)

where zi, z̃j are crosstalk noises, which indicate
the effects from other (µ = 2, · · · , αN) pattern
pairs. These crosstalk noises can be described as:

zi =

αN∑
µ=2

c̃N∑

j=1

ξµ
i ξ̃µ

j x̃j

N
, z̃j =

αN∑
µ=2

cN∑

i=1

ξ̃µ
j ξµ

i xi

N
. (4)

SCSNA [7] evaluates the effective self-depend
term, which comes from the νth pattern pair, in
the crosstalk noises. We took these effects into
consideration, and derived self-consistent equa-
tions called order parameter equations. The

followings are the order parameter equations of
BAM.

Yi = F (c̃m̃1ξ1
i +

αc̃Ũ

1− cc̃UŨ
Yi +

√
αrz),

Ỹj = F (cm1ξ̃1
j +

αcU

1− cc̃UŨ
Ỹj +

√
αr̃z),

m1 =

Z
Dz〈ξ1

i Yi〉i, m̃1 =

Z
Dz〈ξ̃1

j Ỹj〉j ,

q =

Z
Dz〈Y 2

i 〉i, q̃ =

Z
Dz〈Ỹ 2

j 〉j ,

U =
1√
αr

Z
Dzz〈Yi〉i, Ũ =

1√
αr̃

Z
Dzz〈Ỹj〉j ,

r =
c̃

(1− cc̃UŨ)2
(q̃ + cc̃Ũ2q),

r̃ =
c

(1− cc̃UŨ)2
(q + cc̃U2q̃). (5)

We have described the order parameter equations
(5) in the manner of Shiino & Fukai [7]. Note
that the operator 〈·〉 means the expectations for
the stochastic variable ξ1

i or ξ̃1
j , which yield to the

distribution for generating stored patterns. The
stored pattern pairs can be considered to be the
set of stochastic variables which come from inde-
pendent and identical distribution (i.i.d.). Thus,
this substitution is reasonable and proper.

In equations (5), Yi and Ỹj mean xi and x̃j re-
spectively. The inner summation of function F (·)
consists of three parts. The first term comes from
the signal term, the second is the self-dependent
term in the crosstalk noise, and the third term
comes from the other crosstalk noise components.
We assumed each noise term to be an independent
Gaussian noise. Thus, we evaluated the means
and the variances of noise terms which are given by
equation (4). Both means are equal to 0, and the
variances are equal to αr and αr̃ respectively. We
deal with this noise term by averaging, which can
be described by the integral of standard normal
distribution as follows:

R
Dz = 1√

2π

R
dz exp(− z2

2
).

We solved the order parameter equations (5)
numerically and obtained the critical capacity
αc = 0.199. This result agrees with the Tanaka
et al.’s result (αc = 0.1998) which they obtained
by using replica method[8]. In the simulations, we
conducted 10 trials and indicated medians with
quartile deviations. SCSNA analysis also quanti-
tatively explained simulations very well.

4 BAM’s dynamics

As we have seen, SCSNA can the describe equi-
librium state of BAM. In this section, we consider
the dynamics which describes transient state of
BAM. In the limit of the dynamics, it should be
settled into the equilibrium state. The dynamics
equations can be derived from the same concept of
SCSNA. First, we used one-step analysis method
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Figure 2: Time dependence of evolution of the overlap m1

proposed by Amari & Maginu [2]. Then, we ex-
tended the one-step analysis to statistical neuro-
dynamics.

Amari & Maginu proposed an analysis method
called the one-step theory [2] which is derived from
the S/N analysis, and applied it to AAM. Here,
we applied the one-step analysis to BAM and ob-
tained:

Y 2t
i = F (c̃m̃1

2t−1ξ
1
i +

√
αr2t−1z),

Ỹ 2t+1
j = F (cm1

2tξ̃
1
j +

√
αr̃2tz),

m1
2t =

Z
Dz〈ξ1

i Y 2t
i 〉i, m̃1

2t+1 =

Z
Dz〈ξ̃1

j Ỹ 2t+1
j 〉j ,

q2t =

Z
Dz〈(Y 2t

i )2〉i, q̃2t+1 =

Z
Dz〈(Ỹ 2t+1

j )2〉j ,

U2t =
1√

αr2t−1

Z
Dzz〈Y 2t

i 〉i,

Ũ2t+1 =
1√
αr̃2t

Z
Dzz〈Ỹ 2t+1

j 〉j ,

r2t+1 = c̃(q̃2t+1 + cc̃Ũ2
2t+1q2t),

r̃2t = c(q2t + cc̃U2
2tq̃2t−1). (6)

The important point is that these recurrence
formulae can be described by the one-step before
state. These equations are identical form to those
of the sequence association model, which is a va-
riety of AAM, analyzed by Amari [1]. We derived
critical capacity as the limit of the dynamics (6)
and obtained αc = 0.27, which was also suggested
by Amari. However, this critical capacity seems
to be overestimated. We consider that the rea-
son for this overestimation is the assumption that
noise distribution parameters r2t+1, and r̃2t have
no correlation with the previous state in each up-
date. Therefore, we need to evaluate these noise
correlations exactly in accordance with the con-
cept of SCSNA.

Thus, we introduced the statistical neurody-
namics proposed by Okada [6]. Just like one-step

analysis derives from S/N analysis, statistical neu-
rodynamics analysis is also derived from SCSNA.
By using statistical neurodynamics, Okada suc-
ceeded in describing the transient process of AAM
by recurrence formulae of macroscopic parameters
[6]. This analysis evaluated the noise correlation
more exact rather than one-step analysis.

To apply statistical neurodynamics to
BAM, we needed only to evaluate the order-
parameters r2t+1 and r̃2t. There was no
need to re-evaluate the other parameters
Y 2t

i , Ỹ 2t+1
j , m1

2t, m̃
1
2t+1, q2t, q̃2t+1, U2t, Ũ2t+1.

Thus, we expanded crosstalk noises by consid-
ering the effect of the n-step before state:

r2t+1 = c̃q̃2t+1 + c(c̃Ũ2t+1)
2q2t

+ 2c̃

nX
η=1

(cc̃)η q̃2t+1,2(t−η)+1

tY
τ=t−η+1

Ũ2τ+1U2τ

+ 2c(c̃Ũ2t+1)
2

n−1X
η=1

(cc̃)ηq2t,2(t−η)

tY
τ=t−η+1

U2τ Ũ2τ−1

+ (cc̃Ũ2t+1U2t)
2r2t−1 (7)

r̃2t = cq2t + c̃(cU2
2t)

2q̃2t−1

+ 2c

nX
η=1

(c̃c)ηq2t,2(t−η)

tY
τ=t−η+1

U2τ Ũ2τ−1

+ 2c̃(cU2t)
2

n−1X
η=1

(c̃c)η q̃2t−1,2(t−η)−1

tY
τ=t−η+1

Ũ2τ−1U2τ−2

+ (c̃cU2tŨ2t−1)
2r̃2t−2 (8)

The first two terms in equations (7) and (8)
also appeared in the one-step analysis equations
(6). Thus, the residual terms are important in
this analysis. The quantities q̃2t+1,2(t−n)+1 and
q2t,2(t−n) are the auto-correlations between the
current state (whose suffix is described as 2t+1 or
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Figure 3: Capacity comparing the statistical neu-
rodynamics with SCSNA

2t) and n-step before state (described as 2(t−n)+1
or 2(t− n)).

5 Result

We compared the derived macroscopic parameter
dynamics with the computer simulation. Figure
2 shows the time developing of the overlap m1,
which means how well the pattern ξ1 is retrieved
in the first layer. Each abscissa axis is a time step
and the ordinate axis is the overlap m1

2t. Con-
verging the overlap m1

2t to 1.0 means successful
retrieval. In these figures, each line shows overlap
evolution with several initial overlap states.

The figure in the first column of the top row
shows a computer simulation result. We chose a
capacity index as α = 0.15 and the units number
N = 10, 000. In the simulation, retrieval was suc-
cessful when we set the initial overlap to be larger
than 0.4.

The figure in the second column of the top row
shows the result of the one-step analysis and third
column shows the result of two-step analysis. As
shown in the one-step analysis, retrieval succeeded
when the initial overlap state was 0.3. This did not
agree with the simulation result. On the other
hand, the two-step analysis result exhibited the
same behavior to as the simulation.

The first column of the bottom row shows the
three-step analysis result and the second column
shows the full-step analysis, which means expand-
ing noise correlation tracing to the initial state.
As far as we can see from these figures, three-step
analysis can approximate the simulation and it is
very similar to the full-step analysis.

Figure 3 shows the equilibrium state and the
basin derived from statistical neurodynamics. The
abscissa axis is the capacity index α and the ordi-
nate axis is the overlap m1. The solid line shows
the SCSNA result. The dashed lines are derived

from statistical neurodynamics. In each curve de-
rived from neurodynamics, the upper part shows
the equilibrium overlap m1

∞ and the lower part
shows the basin, which means the retrievable limit
of initial overlap m1

0. We also show the basin de-
rived from the simulation result in Figure 3. The
two-step and above analyses show agreement with
these simulation results.

6 Conclusion

In this research, we derived the macroscopic pa-
rameter of BAM in the equilibrium state with SC-
SNA and showed that the result agreed with the
Tanaka et al.’s result. Moreover, we confirmed
that the result also agreed with a computer simu-
lation. Then, we analyzed the transient process of
BAM by using statistical neurodynamics and con-
firmed that this analysis could explain the process
from transient to equilibrium state. As a result,
when we consider the three-step analysis of the
previous correlation, the computer simulation re-
sult can be explained quantitatively.
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