
An Improvement of Program Partitioning Based
Genetic Algorithm

Masami Takata, Hayaru Shouno, and Kazuki Joe
Graduate School of Human Culture

Nara Women’s University
Nara city, JAPAN

AbstractWe propose a sorting rule that improves
a genetic algorithm based program partitioning al-
gorithm, and evaluate the effectiveness by experi-
ments. The sorting rule is sensitized the order of
nodes of a given task graph. Hence, it is necessary
to change the node number to make effective use of
the sorting rule. Several variations of the method
are investigated and experimentally evaluated. Ap-
proximate solutions that provide a sufficient prac-
tical partitioning are obtained using the accelerated
sorting method, and execution times and error de-
creased considerably by changing node numbers of
the task graph.

Keywords: program partitioning, parallel pro-
gram, task graph, genetic algorithm

1 Introduction
To execute numerical simulations in reality,
we are working for the development of an au-
tomatic parallelizing compiler PROMIS-NWU
[8]. The PROMIS-NWU is an extension of the
PROMIS [4] to support distributed memory
environments.
To develop parallelizing compilers for dis-

tributed memory parallel computers, data par-
titioning should be optimized as well as paral-
lelization, since both partitioning are known
as NP-complete problems [1]. However, it is
difficult to develop an algorithm to solve the
problems, so we only treat a parallelization al-
gorithm in this paper.
Girkar et al. [2] had proposed a well-

known program partitioning algorithm based
a branch and bound method. This requires
huge memory capacity besides long calculation
time, since the combinatorial explosion occurs.

To avoid this explosion, we have proposed sev-
eral heuristic and edge sorting methods [6] [7].
Nevertheless some large program partitioning
could not be performed because of lack of mem-
ory. That is why a genetic algorithm (GA)
based program partitioning algorithm was pro-
posed [5]. In this paper, to improve the solu-
tion by [5], we propose several coding methods.
In section 2, we explain Girkar’s algorithm.

In section 3, we describe some definitions for
GA, and propose several gene coding methods.
In section 4, we evaluate the result of proposed
gene coding methods.

2 Program Partitioning Algo-
rithm

In general, a program can be transformed into
an acyclic weighted directional task graph G =
(N, E), where N and E indicate the set of
all nodes and edges in the graph respectively.
Each n ∈ N corresponds to a task of the pro-
gram and is assigned with a sequential number
(starting from 1). An edge e = (ni, nj) ∈ E
(ni < nj) indicates a dependency from node ni

to node nj . Costs t(n) and c(e) are the execu-
tion and the communication time respectively.
The Girkar’s algorithm [2] has three kind of

conditions for edges. The first is Inter Par-
titioning Edge (Inter-PE) that is an edge be-
tween nodes assigned different processors. The
second is Intra Partitioning Edge (Intra-PE)
that is an edge between nodes assigned the
same processor. The other edges are called
Unexamined Edge (U-E). Each condition set is
sorted in the descending order of t(ni)+t(nj)+
c(e). When the algorithm is terminated, a re-
sult graph is shown in Fig.1.

研究会Temp
数理モデル化と問題解決

研究会Temp
40－１

研究会Temp
（２００２． ６． ２６）

研究会Temp
－1－

11

8 8

13

15 15

8 5

20

7 10 7 10
4

1 7

2 3

3

1

4

6

7

3

1

Inter-PE
Intra-PE

Figure 1: Example for program partitioning

Inter-PE
Intra-PE

 ni

nj

Figure 2: Example of deadlock

Let P = 〈n1, ..., nm〉 be a path, which
is made with Inter-PEs and some nodes.
The cost Tτ is given as Tτ = Σni∈P t(ni) +
Σei∈P c(ei). The critical path is defined as the
largest Tτ among the whole paths in the task
graph.
Fig.2 shows a breaking out of deadlock, and

a partial configuration is neglected.

3 GA based Program Parti-
tioning Algorithm

Since Girkar’s algorithm [2] is one of the enu-
merative methods, the algorithm can not ob-
tain the optimal partitioning of a large task
graph because of the combinatorial explosion.
Saito et al. proposed a GA based pro-

gram partitioning algorithm [5], which pro-
vides quasi optimal partitioning of large task
graphs. However, they reported that the GA
based algorithm could not provide better parti-
tioning, in the case of complicated task graphs.
In the GA, genes correspond to the edges

in a task graph. Frequently, the result pro-
vided by GA is sensitive to the coding of genes.
Hence, to provide more superior partitioning,
we propose an edge sorting rule in this paper.
In subsection 3.1, we describe some setting

for a GA. In subsection 3.2, we propose a sort-
ing rule and several ordering methods.
3.1 Setting for a GA
Chromosome: Each gene corresponds to an
edge, and the length of the individual is ε(E),
that means the number of edges. Each gene as-

signed {0, 1} corresponds to {Intra-PE, Inter-
PE } respectively.
Crossover: We adopt one point crossover.
The crossover rate is 0.75.
Mutation: The mutation rate is 0.01. For the
mutation, the individuals are selected 5% and
its genes are flipped 20% randomly.
Fitness value: The fitness value is the length
of the critical path. Hence, the individual with
the small fitness value is better. In the case a
task graph with deadlocks, the fitness value as
∑

n∈G t(n) +
∑

e∈G c(e) + 1.
Process: As the initial setting, S = ε(E)2

individuals are generated, and genes are sub-
stituted 0 or 1 randomly.
In the calculation part, the elitism strategy

is adopted [3]. After 2 ∗ S individuals are gen-
erated by the crossover and the mutation, the
superior S individuals are selected as the off-
spring.
When fitness values of all individuals in a

generation become identical, the algorithm is
terminated except that the whole individuals
have deadlock.
3.2 Accelerating GA
To avoid a deadlock, all edges in a connectional
sub-graph G” generated by Intra-PEs should
be assigned in the neighborhood. Hence, we
propose a sorting rule Sorting 0O as following.
Sorting 0O

Edges e = (ni, nj) are sorted in the ascending order by ni,

and by nj when the node ni has multiple incoming edges.

Sorting 0O depends heavily on the order of
the nodes. Hence, we propose following sixteen
methods, to preserve all nodes in G” to near
n.
Ordering 0A

1. Let max be the largest node number among all nodes.
2. (a) When max ≤ 2, the algorithm is terminated.

(b) When max > 2, large = max − 1.
3. Make a list In-E including ei = (ni, nmax): 1 ≤ i ≤ max − 1
4. (a) When In-E is empty, reorder all nodes without ni

(large < i) starting from 1. Subtract 1 from max.
Go to step 2.

(b) When In-E is not empty, select and remove the ei,
where ni is the smallest node number, from In-E.

5. Change ni to nlarge. Subtract 1 from large. Go to step 4.
Ordering 0B
Step 4(b) of Ordering 0A is changed as follows.

• When In-E is not empty, select and remove the ei, where ni is
the largest node number, from In-E.

Ordering 0C and 0D
The following is added to step 3 of Ordering 0A and 0B respectivery.

(a) When only one incoming edge exists, subtract 1 from max. Go
to step 2.

Ordering 0E
Step 3 and step 4 of Ordering 0A are replaced as follows.• Step 3

Make a list In-Out-E of edges related to the node nmax.
• Step 4

(a) When In-Out-E is empty, reorder all nodes without ni
(large < i) starting from 1. Subtract 1 from max. Go
to step 2.

(b) When In-Out-E is not empty, select and remove ei, where
ni is the smallest node number, from In-Out-E.

研究会Temp
－2－

Table 1: Average generation and error ratio
Method average standard average standard

deviation deviation
generation (generation) error (error)

NO 40.02 14.93 6.1 14.39
0O 31.11 9.57 5.76 13.25
0A 30.68 8.36 5.71 14.85
0B 31.51 8.31 4.78 12.63
0C 31.76 8.44 5.78 13.40
0D 32.35 9.73 5.32 12.74
0E 31.08 10.91 4.08 10.44
0F 34.21 12.20 4.15 10.33
0G 31.23 8.69 3.57 10.00
0H 32.17 10.99 6.30 16.15
1A 31.63 10.16 5.72 13.39
1B 30.93 9.36 5.05 12.05
1C 31.40 9.86 5.39 13.99
1D 31.93 10.31 6.36 15.42
1E 29.79 8.50 6.33 15.55
1F 33.13 11.37 5.49 13.86
1G 30.42 8.90 5.15 12.46
1H 32.98 11.31 4.79 11.22

Ordering 0F
Step 4(b) of Ordering 0E is modified as follows.

• When In-Out-E is not empty, select and remove ei, where ni
is the largest node number, from In-Out-E.

Ordering 0G and 0H
The following is added to step 3 of Ordering 0E and 0F respectively.

(a) When only one edge exists, subtract 1 from max. Go to step 2.

Ordering 1A
1. Let max be the largest node number among all nodes. Let

min be 1.
2. (a) When max = min, the algorithm is terminated.

(b) When max �= min, small = min + 1.
3. Make a list Out-E including ei = (nmin, ni): min ≤ i ≤ max.
4. (a) When Out-E is empty, reorder all nodes without ni

(i < small) starting from small. Add 1 to min. Go
to step 2.

(b) When Out-E is not empty, select and remove ei, where
ni is the smallest node number, from Out-E.

5. Change ni to nsmall. Add 1 to small. Go to step 4.
Ordering 1B
Step 4(b) of Ordering 1A is modified as follows.

• When Out-E is not empty, select and remove ei, where ni is
the largest node number, from Out-E.

Ordering 1C and 1D
The following is added to step 3 of Ordering 1A and 1B respectively.
(a) When only one outgoing edge exists, add 1 to min. Go to step

2.
Ordering 1E
Step 3 and step 4 of Ordering 1A are modified as follows.

• Step 3
Make a list In-Out-E of edges related to the node nmin.

• Step 4

(a) When In-Out-E is empty, reorder all nodes unrelated
to the edges related to the node nmin starting from
small. Add 1 to min. Go to step 2.

(b) When In-Out-E is not empty, select and remove ei, where
ni is the smallest node number, from In-Out-E.

Ordering 1F
Step 4(b) of Ordering 1E is modified as follows.

• When In-E is not empty, select and remove ei, where ni is the
largest node number, from In-Out-E.

Ordering 1G and 1H
The following is added to step 3 of Ordering 1E and 1F respectively.
(a) When only one edge exists, add 1 to min. Go to step 2.

4 Experiments
We performed experiments Girkar’s algorithm
[2], the GA without sorting rule (Sorting NO),
and the GA with our proposing methods.
We used a workstation for the experiments:

DEC Alpha 21264 500MHz (Digital Unix
4.0F) with memory capacity of 1GB.
Acyclic weighted directional task graphs are

created randomly. t(n) and c(e) are set to ran-
dom numbers in [0, 1000].

20

25

30

35

40

45

50

G
en

er
at

io
ns

Method

Convergence generations

N=50

NO 0O 0A 0B 0C 0D 0E 0F 0G 0H 1A 1B 1C 1D 1E 1F 1G 1H

Figure 3: The quartiles deviation of conver-
gence generation with 50 nodes

0.99

1

1.01

1.02

1.03

1.04

1.05

Ra
tio

 to
 B

ran
ch

 an
d B

ou
nd

 m
eth

od

Method

N=50

NO 0O 0A 0B 0C 0D 0E 0F 0G 0H 1A 1B 1C 1D 1E 1F 1G 1H

Girkar

Figure 4: The quartiles deviation of errors in
50 nodes

For the first experiment, 100 random task
graphs with 50 nodes and 49 edges are gen-
erated. As the result, the average calculation
times in Girkar’s algorithm and the GA are
1, 200[sec] and 20[sec] respectively. In Tab.1,
the average errors to the optimal partitioning
are about 5% in the GA by any. Hence, it
turned out that the GA is effective.
By Tab.1 and Fig.3, the convergence gener-

ations in Sorting NO is larger than our propos-
ing ordering methods. In Fig.4, the errors of
some ordering methods decrease. Hence, the
proposal methods are effective.
To examine the efficiency of each method,

100 random task graphs with 100 nodes and 99
edges are generated. Since Girkar’s algorithm
can not partition the task graphs, we regard
the minimum critical path as the one from all
GA solutions for each trial, and calculate error
as the increasing rate from the minimum crit-
ical path. Also, we evaluate the efficiency of
each method by the decreasing rate from the
critical path of the original graph.
Fig.5 shows the convergence generations.

Sorting 0O and each ordering method are not
so different clearly except Sorting NO.
Fig.6 shows the efficiency of GA solu-

tions. Whole methods indicates considerable
improvement except Sorting NO.

研究会Temp
－3－

45

50

55

60

65

70

75

80

85

Ge
ne

rat
ion

s

Method

Convergence generations

N=100

NO 0O 0A 0B 0C 0D 0E 0F 0G 0H 1A 1B 1C 1D 1E 1F 1G 1H

Figure 5: The quartiles deviation of conver-
gence generation with 100 nodes

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

Ra
tio

 to
 M

ini
mu

m
Ev

alu
ati

on

Method

N=100
Original Critical Path

NO 0O 0A 0B 0C 0D 0E 0F 0G 0H 1A 1B 1C 1D 1E 1F 1G 1H

Figure 6: The quartiles deviation of improve-
ment with 100 nodes

Fig.7 shows the error rate to the minimum,
and we discuss comparisons of each method in
detail. In the case of Ordering xA and xB,
all related nodes are always changed. Hence,
the distances of related node should be smaller
than Ordering xC and xD. On the other hand,
the error of Ordering xG and xH are nearly
equal to Ordering xE and xF. In this case,
we guess that a single edge is rarely found.
Compared with Ordering xA and xB,Ordering
xE and xF may cause that chromosomes are
destroyed by some crossover because of the
large distance in related node. Since all edge
e = (ni, nj) are generated like ni < nj , the
number of the paths including nj is larger than
ni. Hence, Ordering xB may cause that the re-
lated node numbers are assigned widely than
Ordering xA. Ordering 0A is not so different
from Ordering 1A. Consequently, we validated
Ordering xA as the best.

5 Conclusions

In this paper, we adopted the genetic algo-
rithm based program partitioning algorithm,
and proposed the sorting method of edges. In
addition, we also inspected the order of edges
to preserve all nodes in a sub-graph to be near

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

NO 0O 0A 0B 0C 0D 0E 0F 0G 0H 1A 1B 1C 1D 1E 1F 1G 1H

Ra
tio

 to
 M

ini
mu

m
Ev

alu
ati

on

Method

N=100

Figure 7: The quartiles deviation of errors in
100 nodes

nodes. We investigated the possible ways to
sort edges and to change node numbers, and
indicated their effectiveness by experiments.
For the future works, we should investigate

crossover, mutation, and fitness value, to use
the genetic algorithm more effectively.

References
[1] M. R. Garey, D.S. Johnson. Computers and Intractabil-

ity, A Guide to the Theory of NP-Completeness. W. H.
Freeman and Company, San Francisco, California, 1979.

[2] M. Girkar, C. D. Polychronopoulos. Partitioning Pro-
grams for Parallel Execution. Proc. of the 1988 Int.
Conf. on Supercomputing, pp.216–229, 1988.

[3] D. E. Goldberg. Genetic Algorithms in Search, Opti-
mization, and Machine Learning. Addison-Wesley, 1989.

[4] H. Saito, N. Stavrakos, C. D. Polychronopoulos, A. Nico-
lau. The Design of the PROMIS Compiler. Int’l J. of
Parallel Programming, Vol.28, No.2, pp.195–212, 2000.

[5] T. Saito, T. Nakanishi, Y. Kunieda, A. Fukuda. Genetic
Algorithm Based Program Partitioning. Proc. of the Int.
Conf. on Parallel and Distributed Processing Techniques
and Applications, Vol.II, pp.707–712, June, 2000.

[6] M. Takata, Y. Kunieda, K. Joe. Accelerated Program
Partitioning Algorithm - An Improvement of Girkar’s
Algorithm-. Proc. of the Int. Conf. on Parallel and Dis-
tributed Processing Techniques and Applications, Vol.II,
pp.699–705, June, 2000.

[7] M. Takata, Y. Kunieda, K. Joe. A Heuristic Approach
to Improve a Branch and Bound based Program Parti-
tioning Algorithm. The proceedings of the 1999 Inter-
national Workshop on Innovative Architecture, pp.105–
114, November, 2000.

[8] T. Yamaguchi, H. Ishiuchi, A. Iwasaka, M. Haneda, H.
Shouno, K. Joe. The Overview of the Paralleilzing Com-
piler PROMIS-NWU Proc. of IPSJ SIGARC 2001-144-
14, pp.79–84, July, 2001. (in Japanese)

研究会Temp
－4－

