
決定論的・自己適応的GAにおける並列可変突然変異に関する
0/1複数ナップサック問題を用いた検討
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本稿では、世代交代型の決定論的・自己適応的GAにおける交叉に並列適用する可変突然変異について、0/1
複数ナップサック問題を用いた検討を行い、交叉にシリアル適用する従来の可変突然変異モデルとの比較を
行う。交叉に並列適用する可変突然変異は、決定論的・自己適応的GAにおいてより高速で信頼性の高い収
束を達成する、より効果的かつ効率のよい構成となり得ることがわかった。また、従来の可変突然変異モデ
ルは、自己適応的な突然変異率制御にネガティブに作用することもわかった。

A Study on Parallel Varying Mutation in Deterministic and
Self-Adaptive GAs with 0/1 Multiple Knapsack Problems

Hernán E. Aguirre and Kiyoshi Tanaka2

In this work we study varying mutations applied parallel to crossover in generational deterministic and self-adaptive
varying mutation GAs with 0/1 multiple knapsack problems, and compare them with the conventional generational
model of varying mutations that apply mutation mostly serial to crossover. We found that varying mutation parallel
to crossover can be a more effective and efficient framework in both deterministic and self-adaptive GAs to achieve
faster convergence velocity and higher convergence reliability. We also found that the conventional model of
varying mutations affects negatively the self-adaptive mutation rate control.

1. Introduction

One of the approaches for parameter control in genetic
algorithms (GAs) seeks to combine crossover with
(higher) varying mutation rates during the course of a
run[1]. It has been shown that deterministically vary-
ing mutation rates over the generations and/or across
the representation can improve the performance of
GAs[2]. Self-adaptive mutation rate schedules have
also been proposed to control the mutation rate of
generational and steady state GAs[3]. From the ap-
plication of operators standpoint, varying mutation
GAs have been mostly designed similar to a canon-
ical GA. Under these conventional varying mutation
approaches, higher mutations are mostly applied serial
to crossover. This rises questions regarding the inter-
ference that one operator could cause to the other and
its possible impact on the performance and robustness
of conventional varying mutation algorithms in gen-
eral and self-adaptive mutation GAs in particular.

We continue to explore a model of generational GA
(GA-SRM) that applies varying mutations (SRM) par-
allel to crossover and “background” mutation (CM),
putting the operators in a cooperative-competitive
stand with each other by subjecting their offspring to
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extinctive selection. The GA-SRM model was pro-
posed in previous reports and its internal structure was
studied in depth using an adaptive schedule for vary-
ing mutation[4]. In this work, the GA-SRM model
of parallel varying mutations is applied to other sub-
classes of varying mutation GAs (deterministic and
self-adaptive varying mutation GAs) and compare it
with the conventional generational model of vary-
ing mutations GAs across a broad range of difficult,
large, and highly constrained 0/1 multiple knapsack
problems[5].

2. A Conventional Varying Mutation GA

A conventional varying mutation GA, similar to
canonical GAs, applies crossover with probability��
followed by mutation with probability�� per bit. In
the absence of crossover (�� ��), mutation is applied
alone. From the application of operators standpoint,
it can be said that the probability of crossover�� en-
ables an implicit parallel application of two operators.
One of the operators is crossover followed by muta-
tion (CM) and the other one is mutation alone (M).
It should be noted that mutation in both CM and M
is governed by the same mutation probability�� and
applies the same “bit by bit” mutation strategy. Since
�� is usually set to 0.6, and higher values are often
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used[1], it turns out that mutation is mostly applied se-
rial to crossover. In canonical GAs�� is small, there-
fore the amount of diversity introduced by mutation
either through CM or M is modest. For the same rea-
son, the disruption that mutation causes to crossover in
CM is also expected to be small. In varying mutation
GAs, however, mutations are higher and the combined
effect of crossover and mutation in CM and the effect
of mutation alone in M should be carefully reconsid-
ered.

3. A GA with Parallel Varying Mutation

An alternative to conventional varying mutation GAs
is to explicitly differentiate the mutation operator ap-
plied parallel to crossover from the mutation operator
applied after crossover. We explore a model of GA
that in addition to crossover followed by background
mutation (CM) it also explicitly applies parallel vary-
ing mutation (SRM)[4]. SRM parallel to CM increases
the levels of cooperation to introduce beneficial muta-
tions and create beneficial recombinations.

The model also incorporates the concept of extinc-
tive selection. Through extinctive (truncated) selec-
tion the offspring created by CM and SRM coexist and
compete for survival and reproduction. The parallel
formulation of genetic operators tied to extinctive se-
lection creates a cooperative-competitive environment
for the offspring created by CM and SRM. The block
diagram of the model is depicted inFigure 1. The
number of parents is�, � � ��� � ���� is the to-
tal number of offspring, and��� and���� are the
number of offspring created by CM and SRM, respec-
tively.

In this work we use deterministic and self-adaptive
mutation rate controls in SRM. The deterministic ap-
proach implements a time-dependent mutation sched-
ule that reduces mutation rate in a hyperbolic shape,
originally proposed in [6] and expressed by

����� �

�
�� �

�� ��
� � �

�

�
��

(1)

where� is the maximum number of generations,� �
��� �� � � �� � ��� is the current generation, and� is the

bit string length. The mutation rate����� varies in the
range [����� ���]. In the original formulation�� � �.
Here we included�� as a parameter in order to study
different ranges for mutation. In the deterministic ap-
proach the mutation rate calculated at time� is applied
to all individuals created by SRM.

To include self-adaptation, each individual incorpo-
rates its own mutation probability within the represen-
tation. In this work we use the self-adaptive approach
originally proposed in [6],[3], which uses a continu-
ous representation for the mutation rate and mutates
the mutation probability of each individual by
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Figure 1: Parallel Varying Mutation GAs
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where	 indicates the	-th individual, � is a learning
rate that control the speed of self-adaptation. Since
the mutation rate of each individual is mutated only
by SRM, individuals created by CM do not carry an
updated mutation rate. Thus, the mutation rate of indi-
viduals that were created by CM at generation�� � is
first updated by

������� ��� �
�

����

�����
	��

������� ��� (3)

where � indicates an individual created by CM at
�� � ��, � indicates the individuals created by SRM
at����� that survived extinctive selection. In the case
that no offspring created by SRM survived extinctive
selection,������� ��� is set to the mutation value of the
best SRM’s offspring.

4. Experimental Setup

The following GAs are used in our simulations. A
simple canonical GA that applies crossover followed
by background mutation, denoted as cGA. Two paral-
lel varying mutation GAs implemented following the
GA-SMR model; one with the deterministic varying
mutation schedule, denoted as GA-hM, and the other
one with self-adaptive varying mutation schedule, de-
noted as GA-sM. Similarly, two conventional varying
mutation GAs with the deterministic (Eq.(1)) and self-
adaptive (Eq.(2)) mutation schedules, denoted hGA
and sGA, respectively. The GAs use either Propor-
tional Selection or (�,�) Proportional Selection. This
is indicated by appending to the name of the GA (�)
or (�,�), respectively. All algorithms use fitness linear
scaling and mating is restricted to��
����� 	 �� �, so a
solution will not cross with itself. For cGA, hGA, and
sGA �� � ��� and for GA-hM and GA-sM the ratio
for offspring creation is set to��� � ���� � � � �.
Background mutation is set to�����

� � ���. The
learning rate for self-adaptation is set to� � ���.
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Figure 2: Deterministic Varying Mutation (� � 	�, � � ���, � � ���
)
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Figure 3: Self-Adaptive Varying Mutation������
� �	� � ���

� (� � 	�, � � ���, � � ���
)

In our study we use difficult, large and highly con-
strained, 0/1 multiple knapsack problems3[5]. A 0/1
multiple knapsack problem consists of� knapsacks
(constraints) and� objects (size of the search space:
��). Each knapsack is of different capacity and each
object has associated a profit. Also, there is a set of
weights for each object, one per knapsack. The ob-
jective of the problem is to find the combination of
objects such that profit is maximized but no knapsack
is overfilled with objects’ weights. Besides� and
�, other parameter of the problem is the tightness ra-
tio � between knapsack capacities and object weights
(which implies a ratio between the feasible region and
the whole search space).

5. Deterministic Varying Mutation

Deterministic mutation varies mutation rates with ex-
actly the same schedule whether it is applied serial
(hGA) or parallel to crossover (GA-hM) and therefore
is an ideal candidate to isolate and observe the impact
of higher mutations in both models of GAs.Figure
2 plots the average fitness of the best-so-far individ-
ual over the generations by hGA and GA-hM using
various populations��� �� and initial mutation proba-

bilities �
�����
� . From these figures it become apparent

3http://mscmga.ms.ic.ac.uk/jeb/orlib/info.html

that varying mutation parallel to crossover is less dis-
ruptive than conventional varying mutation. Note in
the case of hGA the initialflat periods in which the
fitness of the best-so-far individual did not improve.
This is a clear indication of the disruption caused by
high mutation after crossover. Contrary to hGA, in the
case of GA-hM there are no initialflat periods and in
all cases GA-hM converges faster than hGA for sim-
ilar values of (�,�) and������

� . In GA-hM, similar to
hGA, a (�� �)=(50,100) extinctive ratio gives better fi-
nal results than (�� �)=(15,100).

6. Self-Adaptive Varying Mutation

A self-adaptive scheme uses one mutation rate per in-
dividual. Two important ingredients of self-adaptation
are the diversity of parameter settings and the capabil-
ity of the method to adapt the parameters. To observe
the influence that the conventional/parallel application
of varying mutations could have on the self-adaptive
capability itself we avoid initial diversity of parame-
ters. Figure 3 plots the average fitness of the best-so-
far individual over the generations by sGA and GA-sM
using populations��� �� � ���
� ����� �
�� ����� and
mutation ranges of�� � ���
�

� � ���
� � � ����� ���
��

���
� ����� ���
��. In all cases initial mutation for each
individual is set to the maximum value allowed for the
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range,������
� � ���

� .
From Figure 2 andFigure 3 it is worth noting the

following. (i) Self-adaptive mutation increases con-
vergence speed compared to deterministic mutation ei-
ther serial or parallel to crossover. Between sGA and
GA-sM, however, looking atFigure 3 (a) and(b) note
that sGA can match GA-sM’s convergence velocity
only for small values of������

� . This is an indica-
tion that even in the presence of adaptation the conver-
gence velocity of a conventional varying mutation GA
would depend heavily on initial mutation rates, which
is not an issue if adaptive mutation is applied paral-
lel to crossover. (ii) Contrary to deterministic varying
mutation, convergence reliability of self-adaptive mu-
tation serial to crossover could be severely affected,
which becomes quite notorious if no initial diversity
of parameters is allowed. On the other hand, the initial
lack of diversity of parameters does not affect conver-
gence reliability of GA-sM. Note inFigure 3 (b) that
for the same selection pressure convergence reliabil-
ity of GA-sM is similar for all values of������

� . (iii)
Similar to deterministic varying mutation, better re-
sults are achieved by��� �� � �
�� ���� rather than
by ��� �� � ��
� ����.

Next, we allow for initial diversity of parameters
setting������

� to a random value between the mini-
mum and maximum value allowed for mutation. In
this case, the disruption that higher serial mutation
causes to crossover becomes less apparent due to the
initial diversity of parameters and convergence speed
is similar for both sGA and GA-sM. Convergence re-
liability of sGA also improves. However, the nega-
tive impact on reliability remains quite significant for
sGA (see7.). In sGA an appropriate mutation param-
eter implies parameters that would not affect greatly
crossover, which can mislead the mutation rate control
negatively affecting performance. In sGA there is a
selective bias towards smaller mutation rates.

7. Convergence Reliability

To obtain a broader perspective on the performance
of the GAs we apply them to several knapsacks prob-
lems varying�, �, and�. Each combination of�, �,
and� defines a subclass of problem. Here we use to-
tally 7 subclasses of problems, defined by (� � 	�,
� � ���, and� � ���
� ��
�� ���
�; � � ���,
� � ���
, and� � �
� ���; � � 	�, � � ���
,
and� � ��
�� 
���). Ten random problems are used
for each subclass. We test the statistical significance
of the results achieved by hGA, GA-hM and sGA,
GA-sM. Table 1 shows results of the 6 correspond-
ing two-factor factorial ANOVA, wherePval is thep
value (the smallest significant level� that would al-
low rejection of the null hypothesis). Inspection of the

Table 1: Convergence Reliability: Factorial ANOVA
hGA, GA-hM sGA, GA-sM

Source �� � Pval � Pval
GA 1 3.260 0.0766 9.731 0.0029
� 2 1175.553 0.0000 570.167 0.0000

GA-� 2 0.454 0.6373 4.078 0.0224
GA 1 6.219 0.0157 12.418 0.0009
� 2 549.927 0.0000 519.263 0.0000

GA-� 2 0.051 0.9505 4.867 0.0114
GA 1 8.685 0.0047 42.053 0.0000
� 2 94.062 0.0000 58.371 0.0000

GA-� 2 0.010 0.9903 0.506 0.6055
MSError 54

p values under hGA,GA-hM reveals that there is some
indication of an effect due to the conventional/parallel
application of deterministic varying mutation, since
Pval � ����� andPval � ����� for � and� are not
much greater than� � ���
. However, looking un-
der sGA,GA-sM, there is indication of an strong main
effect of applying self-adaptive varying mutation con-
ventional/parallel to crossover.

8. Conclusions

We have studied the application of varying mutation
either serial or parallel to crossover and discussed its
effect on the performance of deterministic and self-
adaptive varying mutation GAs. Experiments were
conducted with several 0/1 multiple knapsacks prob-
lems. We found that varying mutation parallel to
crossover can be a more effective and efficient frame-
work in both deterministic and self-adaptive GAs to
achieve faster convergence velocity and higher conver-
gence reliability. We also found that the conventional
model of varying mutations affects negatively the self-
adaptive mutation rate control.
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