#EEA HRAEES
IPSJ SIG Technical Report

Droess

2003 —~MPS—45
20037624

Performance Evaluation of Instruction Set Architecture of MBP-light:
a distributed memory controller for a large scale multiprocessor

Noriaki Suzukr' and HIDEHARU AMANO!

Abstract The instruction set architecture of MBP-light, a dedicated processor for the DSM
(Distributed Shared Memory) management of JUMP-1 is analyzed with a real prototype. The
Buffer-Register Architecture proposed for MBP-core improves performance with 5.64% in the
home cluster and 6.27% in a remote cluster. It appears that the dominant operations in the
DSM management program are handling packet queues assigned into the local cluster. Thus,
common RISC instructions, especially load/store instructions, are frequently used. Separating
instruction and data memory improves performance with 33%. The results suggest that an-
other alternative which provides separate on-chip cache and instructions dedicated for packet

queue management is advantageous.

Keywords: CC-NUMA, DSM management, Instruction Set Architecture, JUMP-1

1. Introduction

A Cache Coherent Non-Uniform Memory Ac-
cess machine (CC-NUMA) was one of hopeful can-
didates for future common high performance ma-
chines in 1990s. Unlike bus-connected multipro-
cessors, the system performance can be enhanced
scalable as to the number of processors. Moreover,
parallel programs developed in small multiproces-
sors can be ported easily.

JUMP-1 is a prototype of a massively parallel
processor with cache coherent DSM developed by
collaboration of seven Japanese universities . The
major goal of this project is to establish techniques
required to build a cost effective DSM when a large
number of processing units are connected. In or-
der to satisfy both high degree of performance and
flexibility, JUMP-1 has several distinctive struc-
tures. Interconnection Network called RDT? in-
cludes both torus and a kind of fat tree struc-
ture with recursively overlayed two-dimensional
square diagonal tori structure. A dedicated proces-
sor called MBP(Memory Based Processor)-light®
is proposed to manage the DSM of JUMP-1. It con-
sists of a simple dedicated core processor and hard-
wired controllers which handle memory systems,
bus and network packets. For efficient DSM man-
agement, a special instruction set and register ar-
chitecture called “Buffer-Register Architecture” is
introduced in the core processor.

In this paper, we evaluate the performance and
impact of an instruction set architecture of MBP-

+ Department of Computer Science, Graduate School of Keio
University

i

| L2 Cache | [r2Cache | [L2 Cache | Ezc@nfl

RISC RISC | RISC RISC
Processor | |Processor] |Processor| |Processor

RDT Network

~Fig.1 The Structure of JUMP-1 Cluster

light in JUMP-1. Using a real machine, we esti-
mated the number of executed instructions and an-
alyzed its efficiency.

2. The Structure of JUMP-1

2.1 Overview of JUMP-1

The initial design of JUMP-1 consists of 256
clusters connected each other with a network
RDT. Each cluster provides a high speed point
to point I/O network connected with disks and
high-definition video devices.Each cluster is a bus-
connected multiprocessor, as shown in Figure 1,
including four RISC processors (SuperSPARC+),
MBP-light which is directly connected to a cluster
memory, and RDT router chip for interconnection
network?. MBP-light, the heart of JUMP-1 clus-
ter, is the custom designed processor which man-

(€)]

ages DSM(Distributed Shared Memory), synchro-

nization, and packet handling.

2.2 The DSM Management in JUMP-1

To build a cost effective DSM, the following
methods are used in JUMP-19,
(1) Each processor (SuperSPARC+) share a

(Cluster Memorﬂ @{DT Router Chi])
[

e

NN S

(_Cluster Bus) @ocal Memory & 1/0)

‘Fig.2 The Structure of MBP-light

global virtual address space with three-stage
TLB implementation. The directory is at-
tached not to every cache line but to every
page, while the data transfer is performed by
a cache line. Some parts of cluster memory
are available as L3 (Level-3) cache which
stores the copies of other cluster memory.

(2) Various types of cache coherence protocols
can be utilized dynamically, including not
only an invalidate policy but also an update
policy *.

(3) Reduced Hierarchical Bitmap Directory
schemes (RHBDs) are introduced” to man-
age directory efficiently. In the RHBD, the
bitmap directory is reduced and used in the
packet header for quick multicasting without
directory access in each hierarchy. The hier-
archical structure of RDT is suitable for an
efficient implementation of the RHBD.

The above DSM management mechanism is ex-
ecuted by the software on MBP-light developed in

Kyoto University™.

3. MBP-light

As shown in Figure 2, MBP-light consists of
three modules: RDT interface to treat network
packets, MMC (Main Memory Controller) to con-
trol cluster memory and cluster bus, and MBP-core
which is the core processor. RDT Interface and
MMC provide their own hardware mechanisms,
and work independently from MBP-core.

3.1 MBP-core

3.1.1 Buffer-Register Architecture

Since jobs which must be quickly processed are
mostly managed by the hardware mechanisms in
the RDT Interface and MMC, the MBP-core only
processes a complicated part of the DSM protocol.

MBP-core provides 16 GPRs (General Purpose

* The update policy could not be implemented with a hard-
ware problem in the real machine.

5 8 8

r | mn |

_PBR2

Fig.3 The Répreséntative Instruction Set

Registers) of 16-bit width- and 112 PBRs (Packet
Buffer Registers) of 68-bit width. The PBR is in-
dicated by the content of the GPR, and accessed
in the processor pipeline like a common register.
While operations and data transfer between PBR
and GPR or PBR and PBR are allowed, the con-
tent of the PBRs is transferred directly as a packet
from/to MMC or RDT Interface. As operations are
mainly done between such a packet buffer and a
register, we call this structure the Buffer-Register
Architecture.

3.1.2 Instruction Set

Figure 3 shows the instruction set and representa-
tive instruction formats of the MBP-core. The PBR
is byte-addressed by the content of the GPR with
4-bit displacement. Operation target of the PBR is
mainly a certain part of 8-bit or 16-bit in the PBR
addressed by the GPR. This comes from that almost
all the fields of a packet header are less than 8 bit
and they are treated independently. While various
operations are provided between GPR and GPR or
GPR and PBR, operations between PBR and PBR
are limited (mainly data transfer operations).

" Table 1 The Classification of MBP-core Instructions

Class Type
WGG operate between GPR and GPR |
LMA access to local memory
BRANCH | branch
WGI operate between GPR and Imm.
BPI operate between PBR and Imm.
RDT control RDT Interface
MPP transmit from PBR to PBR
WPG operate between PBR and GPR
MMC control of MMC]
T table jump
INT control interrupt
IMA access to internal memory
SPE special instructions
NOP no operation

The classification of instructions on MBP-core is
shown in Table 1. In addition to the instructions

described above, MBP-core has some instructions
which control RDT Interface or MMC. It also has
a dozen ‘special instructions to process a protocol
transaction quickly.

3.1.2.1 Common RISC style instructions:

WGG, WGI, LM and BRANCH instructions are
common 3-operand RISC style instructions. WGG
includes arithmetic (add/sub) and logical operation
between GPR and GPR, while WGI for GPR and
immediate data. There are no instructions to copy
the date between registers because number 0 GPR
(RO) is always zero. BRANCH instructions use
simple flags.

3.1.2.2 PBR manipulating instructions:

PBR manipulating instructions are classified into
WPI, WPG and MPP instructions. By using WPI
instructions, 8 bits immediate data and a 8-bit field
of PBR can be calculated. It is convenient to gen-
erate the field of a packet header. WPG instruc-
tions are used for operation between a 16-bit field of
PBR and GPR. Both the GPR and the target field of
PBR can be a destination register. Finally, 8-bit/16-
bit field and the whole field (68-bit) copy between
PBRs can be done using MPP instructions. MPP
instructions are used for copy of packet header or
body.

4. Evaluation Results

4.1 Evaluation Environment

Now, the DSM management program is avail-
able, and composed as a firmware of JUMP-15),
In order to evaluate the instruction set architec-
ture of MBP-core, an application program, DSM
based parallel matrix multiplication, is executed on
JUMP-1. The product of 256 x 256 matrices con-
sisting of single precision floating point numbers
is calculated in parallel. The number of instruc-
tions in the following sections is average number
for processing 100 receiving packets. Note that, the
application program itself runs on node processors
(SuperSPARC+), and MBP-core executes the DSM
management program composed as a firmware.

4.2 The Instruction Mix

Here, the instruction mix of MBP-light is ana-
lyzed. Although the same DSM management pro-
gram is executed, the executed processes are differ-
ent in the home node and remote nodes. Thus, the
cluster 0 (home cluster) and the cluster 1 (remote
cluster) are evaluated. These results are shown in
Figure 4.

These results show that common RISC instruc-
tions are dominant compared with PBR manipu-
lating instructions and special instructions. Only
MVPG (MV PBR from/to GPR) is frequently used

- SUBGI LHI -'ADDGGMVPG
77% 1.2% 40% 39%

ADDGI ~ [|LLM [SLM /
24.6% 11.0%{10.8

(a) Included in the compiled code

- Others

SUBGI LHI MVPG BNZ BOZ
7.7% 6.6% 4.3% 2.6%2.5%

ADDGI LLM | SEM K \
22.4% 187% | 14.5% Others
(b) Home Cluster

SUBGI LHI MVPG BNZ BOZ
8.0%. 6.3%45% 2.1% 2.6%

ADDGI | LLM | stM NN
20.8% 184% | 14.5% Others

(c) Remote Cluster
Fig.4 Instruction Mix

special instructions of MBP-core, and others are
negligible.

Table 2 Comparison with Local Memory Access
1 Clock Stall | Without Stall | Impr.

Home 64471 48394 | 33.2%
CL1 43130 32448 | 32.9%

The ratio of the local memory access instructions
(LLM and SLM) is also high, that is, 33.2% in the
home cluster and 32.9% in the cluster 1. This is
because the DSM management program frequently
manipulates software managed packet queues in the
local memory.

An instruction memory and a data memory are
not separated in MBP-light by the pin limitation
problem of the package, and these instructions
cause 1 clock stall. Table 2 compares the number
of executing clock cycles with and without stall.
This table shows that separation of instruction and
data memory improves the performance 33.2% in
the home cluster and 32.9% in the cluster 1. Thus,
the separation should be done if the package with
enough pin number can be used.

4.3 The Effect of PBR Manipulating Instruc-

tions

Table 3 shows the number of PBR manipulating
instructions included in the compiled code and exe-
cuted in home/remote clusters. Since special func-
tion calls are needed, a large part of PBR instruc-
tions are not included in compiled code, and never
executed. Only move instructions and bit manipula-
tion instructions are frequently used, while numeri-
cal/logic operation instructions are rarely used.

Table 4 assumes the following conditions and:
shows the number of cycles in the case of replac-
ing PBR manipulating instructions with common

Table 3. PBR Manipulating Instructions

Ins. - { Compiled code | Home | Remote
ANDPI) 10 0 38

LPI 40 52 3
ADDPG 9 56 42
ANDPG 41 454 330
ORPG 10 0 39
MVBPG 252 [185 319
MVPG 909 2099 1476
MVBPP 46 2 0
MVPP 144 134 166
MVLPP 158 298 205

Table 4 = Replacement of PBR Manipulating Instructions with

Other Instructions

Ins. Cycles Ins. Cycles Ins. Cycles
ANDPI 3 1 ORPG 25 | MVPP

LPI 2 { MVBPG 1 | MVLPP
ADDPG 2.5 { MVPG 1
ANDPG 2.5 | MVBPP 2

Table 5 Compare Required Cycles: PBR Manipulating
Instructions

With PBR | Without PBR Impr.
home 64471 68106 | 5.64%
CL1 43130 45836 | 6.27%
instructions.
e The packet buffers are mapped in an internal
memory. .
e A byte accessing to the internal memory is al-
lowed.

e The access of the internal memory is com-

pleted in 1 cycle.

The. numbers of required cycles for ADDPG,
ANDPG and ORPG differ whether the destination
is PBR or GPR. It requires 2 cycles when GPR is
destination, while 3 cycles are necessary when PBR
is destination. Here, it is considered to require 2.5
cycles for convenience.

Table 5 shows the required clock cycles w1th
and without PBR manipulating instructions. In this
case, 5.64% and 6.27% performance improvement
are attained in the home and a remote cluster, re-
spectively. Although the cost of Buffer-Register Ar-
chitecture approach is small compared with com-
mon on-chip memory with DMA mechanism, it
does not contribute to the performance improve-
ment of the DSM management program so much.

5. Conclusion

In this paper, we evaluate the instruction set ar-
chitecture of MBP-light executing the DSM man-
agement program on a JUMP-1 prototype.

The Buffer-Register Architecture proposed for
MBP-core improves performance with 5.64% in the

home cluster and 6.27% in a remote’ cluster. It
appears that the dominant operations in the DSM
management program were handling packet queues
assigned into the local cluster. Thus, common RISC
instructions, especially load/store instructions, are
frequently used. Thus, separating instruction and
data memory improves performance with 33%.

The results suggest that another architecture
which provides separate on-chip cache and instruc-
tions dedicated for packet queue management is ad-
vantageous.

References

1) K. Hiraki et. al., “Overview of the jump-1, an
mpp prototype for general-purpose parallel compu-
tations,” IEEE International Symposium on Parallel
Architectures, Algorithms and Networks, pp.427-
434, 1994,

2) Y.Yang et. al., “Recursive Dnagonal Torus: An In-
terconnection Network for Massively Parallel Com-
puters,” In IEEE Transactions on Parallel and Dis-
tributed Systems, Vol.12, No.7, pp 701-715, July
2001

3) Inoue Hiroaki, et. al., “MBP-light: A Procéssor
for Management of Distributed Shared Memory,”
3rd International Conference on ASIC, pp.199-202,
Oct. 1998.

4) Hieharu Tanaka et. al., “The Massively Parallel
Processing System JUMP-1,” Ohmsha, ISBN4-274-
90083-5, 1996.

5) M. Konishi et. al., “Implementation of Distributed
Shared Memory Management of the JUMP-1 Mul-
tiprocessor,” IPSJ Transactions, Vol. 42, No. 4, pp.
674 — 682, 2001.)

6) N. Suzuki et. al., “Performance Evaluation of a
Multicast Mechanism of RDT Network for a Mas-
sively Parallel Processor JUMP-1” The Transactions
of the Institute of Electronics, Information and Com-
munication Engineers, Vol J 85 D-I, No. 12 pp 1114-
1125, Dec. 2002.

7) T. Kudoh et. al., “Hierarchical bit-map directory
schemes on the RDT interconnection network for
a massively parallel processor JUMP-1,” Interna-
tional Conference on Parallel Processing, August,
pp.1-186-1-193, 1995.

