
A Multi–Objective Genetic Algorithm for Program
Partitioning and Data Distribution Using TVRG

Masami Takata ∗, Tomomi Yamaguchi †, Chiemi Watanabe †,
Yoshimasa Nakamura ∗ ‡, and Kazuki Joe †

∗ PRESTO, Japan Science and Technology Agency
Kyoto University
Kyoto-city, Japan

† Graduate School of Humanity and Science
Nara Women’s University

Nara-city, Japan

‡ Graduate School of Informatics
Kyoto University
Kyoto-city, Japan

Abstract We propose an algorithm that per-
forms data distribution and parallelization simul-
taneously. The objectives of the algorithm are
to reduce the length of critical path and the total
memory size. Regardless to say, memory usage
for each processor must be balanced. To obtain
an optimal solution, we first adopted a branch
and bound method. Since the branch and bound
method often fails in the case of a large task
graph, we adopt a multi–objective genetic algo-
rithm, that provides a near optimal solution.

Keywords: Data distribution, Program partitioning,
Parallel program, TVRG, Genetic algorithm, Multi–
objective

1 Introduction
To execute numerical simulations, we are working
for the development of an automatic parallelizing
compiler PROMIS-NWU [10]. It is an extension of
PROMIS [8] developed at UIUC, which is also an
automatic parallelizing compiler for shared memory
environments.

To design a parallelizing compiler for distributed
memory environments, data distribution should be
optimized as well as program partitioning of par-
allelization. Since both program partitioning and
data distribution are known as an NP-complete
problem [1], both problems should be solved simul-
taneously.

TVRG (Task and Variable Representation
Graph) [4] represents program flows and data de-
pendence of given programs for PROMIS-NWU.
To extract essential information from TVRG, given
programs transform to an acyclic weighted direc-

tional task graph. In our previous works for pro-
gram partitioning [5] [6], large task graphs can
not be partitioned by branch and bound based ap-
proaches. Therefore, we assume that similar ap-
proaches for simultaneous partitioning to large task
graphs also require too much computational re-
sources. We here propose a GA (Genetic Algo-
rithm) based simultaneous partitioning algorithm
which provides a near optimal solution to given
large task graphs. For an appropriate GA based
algorithm, we use a multi–objective GA.

2 Program Partitioning and
Data Distribution

In TVRG [4], program flows are transformed into
an acyclic weighted directional graph. Flow de-
pendence and output dependence of data are also
obtained as the node number information in the
graph. Combining the acyclic weighted directional
graph and data dependence, a task graph for our
simultaneous partitioning algorithm is created.

2.1 Definitions for Task Graphs
Program flows and data dependence are repre-
sented as an acyclic weighted directional task graph
G = (N,E), where N and E indicate the sets of
all nodes and edges of the task graph, respectively.
Each n ∈ N corresponds to a task of a given pro-
gram, and is assigned to a positive number (starting
from 1). A function t(n) gives the cost required to
execute the node n. An array Arn(l,m) expresses
the range of an array elements accessed in the node
n, where l shows the start (l = 0) and end (l = 1)
element number and m indicates the array. An edge

事務局
社団法人 情報処理学会　研究報告IPSJ SIG Technical Report

事務局
2004－MPS－50　(9)

事務局
2004／6／22

事務局
－37－

Inter-PE

Intra-PE

 ni

nj

Figure 1: Example of deadlock

e = (ni, nj) ∈ E (ni < nj) indicates the existence
of data dependency from node ni to node nj , and
the function c(e) gives the communication cost for
the edge e, when node ni and nj are assigned to
separate processors.

2.2 Definitions for Simultaneous
Partitioning

In our simultaneous partitioning algorithm, the
number of possible edge conditions is 3: Inter-PE,
Intra-PE, and U-E[2].

The communication costs of Intra-PEs are con-
sidered as zero. When a set of node Ni =
{n1, n2, ...} connected Intra-PE are merged, the to-
tal cost is given as t(Ni) =

∑
ni∈Ni

t(ni). The
array access range is calculated as ArNi(0,m) =
minni∈Ni Arni(0,m) (except Arni(0,m) = −1),
and ArNi(1,m) = maxni∈Ni Arni(1,m). In the
case that a set of Inter-PE edges Ei = {ei1, ei2, ...}
are connected from the same node to Ni, the Ei

is said to be merged, and the cost is calculated as
c(Ei) =

∑
ei∈Ei

c(ei).
Let P = 〈n1, n2, ..., nm〉 be a path composed of

Inter-PEs and their sequentially connecting nodes
(i.e. there is an edge between ni and ni+1 where
1 ≤ i < m). The cost Tτ of P is given as
Tτ (P) =

∑
ni∈P t(ni) +

∑
ei∈alledgeswithinP c(ei).

The critical path is defined as the path P so that
Tτ (P) is the largest.

The memory consumption of each node is cal-
culated as mem(n) =

∑
j(Arn(1, j) − Arn(0, j) +

1). Thus, the total memory consumption in a
task graph G = (N,E) is given as Mem(G) =∑

n∈N mem(n). The maximum difference be-
tween memory consumption at each node of G
is defined as Ran(G) = (maxn∈N mem(n)) −
(minn∈N mem(n)).

The optimal solution must satisfy the following
objectives: 1) Shorten the critical path length to re-
duce the parallel program execution time, 2) Min-
imize the memory consumption Mem(G), and 3)
Minimize the maximum difference Ran(G).

Figure 1 shows the occurrence of deadlock. Ob-
viously, the graph is against the condition of an
’acyclic graph’. Therefore, solutions with deadlock
must be removed from search space.

3 Simultaneous Partitioning
Algorithm

The optimal partitioning is obtained by a BB–SP–
algorithm (branch and bound based simultaneous
partitioning algorithm), because the search space
is expressed as a binary search tree. In the case
of large task graphs, the BB–SP–algorithm can not
give the optimal partitioning [5] [6].

An MOGA–SP–algorithm (multi-objective GA
based simultaneous partitioning algorithm) give
near optimal solutions of the large task graph [9]
[7]. Since the genes correspond to the edges, the
results are sensitive to the coding mechanism of the
genes. Therefore, we have proposed an edge sorting
rule [7].

3.1 BB–SP–algorithm
We apply a BB–SP–algorithm to obtain three op-
timal solutions which satisfy each objectives.

At the initial setting of the BB–SP–algorithm, all
edge states are U-E. Then, branch operations are
performed repeatedly to generate the list of partial
configurations. A partial configuration is expressed
as a tuple < S,O >, where S contains the state
information of all edges as an array, and O indicates
the values of each objective as an array.

The procedure of the BB–SP–algorithm is sum-
marized as follows.

1. Generate a task graph G from TVRG.
2. Generate the initial configuration < S, O >, where each

element of S is the U-E state.
3. Select a partial configuration < S′, O′ > so that the min-

imum critical path obtained from O′ is included.
4. Examine whether each element of S′ is not the U-E state.

• If no U-E edge remain, G′ is the first optimal par-
titioning. Go to step 8.

• If there are U-E edges, choose an edge e′ whose
state is U-E.

5. Generate a partial configuration < S′1, O′1 > by trans-
forming the edge e′ state to Inter-PE. Create a graph G′

with S′1 from G. Calculate O′1 of G′. Add < S′1, O′1 >
to the partial configuration list.

6. Generate a partial configuration < S′2, O′2 > by trans-
forming the edge e′ state to Intra-PE. Create a graph G′

with S′2 from G. Examine whether G′ has deadlock.
• If G′ does not have deadlock, Calculate O′2 of G′.

Add < S′2, O′2 > to the partial configuration list.
7. Go to step 3.
8. Select a partial configuration < S′, O′ > so that the min-

imum Mem(G′) from O′ is included.

9. Examine whether each element of S′ is not the U-E state.
• If no U-E edge remain, G′ is the second optimal

partitioning. Go to step 12.

• If there are U-E edges, choose an edge e′ whose
state is U-E.

10. Execute the step 5 and 6.
11. Go to step 8.
12. Select a partial configuration < S′, O′ > so that the min-

imum Ran(G′) from O′ is included.

13. Examine whether each element of S′ is not the U-E state.
• If no U-E edge remain, G′ is the third optimal par-

titioning. The algorithm is terminated.

• If there are U-E edges, choose an edge e′ whose
state is U-E.

14. Execute the step 5 and 6.
15. Go to step 12.

事務局
－38－

Table 1: The optimal solution. (Using BB–SP–algorithm)

object max Tτ Mem(G) Ran(G)

critical path length 4683 3873 244

minimum Mem(G) 14835 1953 440

minimum Ran(G) 7469 3967 207

3.2 MOGA–SP–algorithm
Chromosome: Each gene corresponds to an edge of a

task graph. Hence, the length of the individual is ε(G). Since

the edge condition is Inter-PE or Intra-PE, the individual {0, 1}
corresponds to {Intra-PE, Inter-PE }.
Crossover: When multiple crossover points are employed,

the ratio of generating the deadlocked offspring may increase.

Therefore, we adopt a single crossover point with the rate of

0.75. Two individuals are selected from the ancestor at random.

The crossover point is selected at random.

Mutation: The mutation rate is 0.01. For the mutation

operation, 5% of the individuals are selected and 20% of genes

are flipped.

Fitness value: Each individual has three kinds of fitness

values: the length of the critical path, Mem(G) and Ran(G) of

given task graphs expressed by the chromosome 01. Hence, an

individual with smaller fitness values is better. If the given task

graph has deadlock, we regard the fitness value of the individual

as
∑

n∈G
t(n) +

∑
e∈G

c(e) + 1.

Process: i) X = ε(G)2 individuals are generated. ii)

Select the superior X/6 individuals in each objective from an-

cestors, and copy them into a set Y , as the elitism strategy [3].

iii) Generate X ∗ 3/2 individuals by a crossover operation, and

move them to Y . iv) Perform a mutation operation to Y . v)

Calculate the fitness values in Y . vi) Select the superior X/3

individuals in each objective as the offspring. vii) Go to step

ii.

3.3 Sorting and Ordering
To make effective use of BB–SP–algorithm, the list
of edges (e = (ni, nj)) is sorted by t(ni) + t(nj) +
c(e) by descendent order [2]. On the other hand,
we adopt Sorting 0O method proposed in [7] for
MOGA–SP–algorithm.

Since Sorting 0O depends heavily on the order of
the nodes, we also use Ordering 0A or Ordering 1A
[7]. Ordering 0A and Ordering 1A are an effective
method for the reference of incoming and outgoing
edges, respectively.

4 Experiments
We performed experiments for the evaluation of
MOGA–SP algorithm.

Experimental environment is: Linux 2.4.7 (Red-
Hat Linux 7.1.2), Pentium 4 (1.8GHz) with mem-
ory capacity of 1GB. A task graph with 30 nodes
and 29 edges are generated, because BB–SP–
algorithm can not be executed in the case of larger

100(%)

 80

 60

 40

 20

 0
0 1 2 3 4 5 6 7 8 9 10
 (generation)

Sorting0O Ordering0A Ordering1A

Figure 2: The ratio of the chromosomes with deadlock at each
generation

task graphs. Each node cost and edge cost are set
to random numbers with a uniform distribution of
[501, 1000]. The number of arrays used in the task
graph is five, and each array has 100 elements. In
MOGA–SP–algorithm, the generation count is 10.

As the result, the execution times for BB–SP–
algorithm and MOGA–SP-algorithm are 6.8[sec]
and 0.9[sec], respectively.

Table 1 shows the objective values for the opti-
mal solution. To reduce Mem(G), the accessed el-
ement size of arrays shared by different processors
must be small. In a typical task graph, the range
of the array elements used in a node overlaps to the
other nodes. To decrease the overlapped area, those
overlapping nodes should be merged in the same
node. Consequently, the optimal solution for min-
imum Mem(G) makes max Tτ increase. Hence, si-
multaneous partitioning algorithms must optimize
the critical path length and the Ran(G) size, while
the Mem(G) size should be compromised by mem-
ory capacity.

In MOGA–SP–algorithm experiments, we ob-
serve that individuals with deadlock exist at each
generation. Figure 2 shows the ratio of individuals
with deadlock. With all edge sorting methods, the
number of individuals with deadlock decreases ac-
cording to renewal operations. Consequently, the
superior individuals with shorter critical paths in-
crease by renewal.

Figure 3, 4, and 5 show distributions of individ-
uals without deadlock at each generation.

In (b), the fitness values of each individual at
the 10th generation are closer to the initial than
at the initial generation. In (c), Mem(G) in-
creases and Ran(G) decreases at the 10th gener-
ation. Compared with the experimental result of
BB–SP–algorithm, the optimal solution for critical
path is also an approximate solution for Ran(G),
and the optimal solution for Ran(G) has smaller
critical paths than for Mem(G). Therefore, at the
10th generation, several individuals are similar to
the optimal solutions by BB–SP–algorithm. Con-

事務局
－39－

Mem(G)

CriticalPath

Ran(G)

CriticalPath

0 generation

Ran(G)

Mem(G)

(a)

(b)

4700 8900 13100 17300 21500

4300

3600

2900

2200

1500

4300

3600

2900

2200

1500

4300

3600

2900

2200

1500

470

380

290

200

470

380

290

200

470

380

290

200

470

380

290

200

470

380

290

200

470

380

290

200
1500 2200 2900 3600 4300 1500 2200 2900 3600 4300

4700 8900 13100 17300 21500 4700 8900 13100 17300 21500

4700 8900 13100 17300 215004700 8900 13100 17300 215004700 8900 13100 17300 21500

1500 2200 2900 3600 4300

(c)

10 generation5 generation

Figure 3: The fitness values for each chromosome without
deadlock. (Using Sorting 0O.)

Mem(G)

CriticalPath

Ran(G)

CriticalPath

0 generation

Ran(G)

Mem(G)

(a)

(b)

4300

3600

2900

2200

1500

4300

3600

2900

2200

1500

4300

3600

2900

2200

1500

470

380

290

200

470

380

290

200

470

380

290

200

470

380

290

200

470

380

290

200

470

380

290

200

4700 8900 13100 17300 21500 4700 8900 13100 17300 21500 4700 8900 13100 17300 21500

4700 8900 13100 17300 21500 4700 8900 13100 17300 21500 4700 8900 13100 17300 21500

1500 2200 2900 3600 4300 1500 2200 2900 3600 43001500 2200 2900 3600 4300

(c)

5 generation 10 generation

Figure 4: The fitness values for each chromosome without
deadlock. (Using Ordering 0A.)

sequently, we find our MOGA–SP algorithm is ef-
fective.

In Figure 3 (a), we observe that the initial indi-
viduals have similar characteristics only when ap-
plying the Sorting 0O method. In general, the
initial individuals in GA should start from differ-
ence conditions [3]. At the 10th generation by
Ordering 0A and Ordering 1A, a lot of approxi-
mate solutions, in which the critical path length
and the Ran(G) size decrease and Mem(G) size in-
creases, are observed. Thus, Ordering 0A and Or-
dering 1A methods are both effective for MOGA–
SP–algorithm.

5 Conclusions
In this paper, we proposed BB–SP–algorithm and
MOGA–SP–algorithm for simultaneous partition-

Mem(G)

CriticalPath

Ran(G)

CriticalPath

0 generation

Ran(G)

Mem(G)

(a)

(b)

(c)

4300

3600

2900

2200

1500

4300

3600

2900

2200

1500

4300

3600

2900

2200

1500

470

380

290

200

470

380

290

200

470

380

290

200

470

380

290

200

470

380

290

200

470

380

290

200

4700 8900 13100 17300 21500

1500 2200 2900 3600 4300 1500 2200 2900 3600 4300

4700 8900 13100 17300 21500 4700 8900 13100 17300 21500

4700 8900 13100 17300 215004700 8900 13100 17300 215004700 8900 13100 17300 21500

1500 2200 2900 3600 4300

5 generation 10 generation

Figure 5: The fitness values for each chromosome without
deadlock. (Using Ordering 1A.)

ing of program partitioning and data distribution.
Using the BB–SP–algorithm, we obtained the opti-
mal solution in the case of 29 edges or below. Using
the MOGA–SP–algorithm, a larger task graph can
be partitioned approximately. We also validated
Ordering 0A and Ordering 1A as effective ordering
methods for the MOGA–SP–algorithm.

References
[1] M. R. Garey, D.S. Johnson. Computers and Intractabil-

ity, A Guide to the Theory of NP-Completeness. W. H.
Freeman and Company, San Francisco, California, 1979.

[2] M. Girkar, C. D. Polychronopoulos. Partitioning Programs
for Parallel Execution. Proc. of the 1988 Int. Conf. on
Supercomputing, pp.216–229, 1988.

[3] D. E. Goldberg. Genetic Algorithms in Search, Optimiza-
tion, and Machine Learning. Addison-Wesley, 1989.

[4] M. Haneda, H. Shouno, K. Joe. An Intermediate Represen-
tation for Parallelizing Compilers for DSM Systems. The
International Workshop on Advanced Compiler Technol-
ogy for High Performance and Embedded Systems, pp.47–
55, July, 2001.

[5] M. Takata, Y. Kunieda, K. Joe. Accelerated Program Parti-
tioning Algorithm - An Improvement of Girkar’s Algorithm-
. Proc. of the Int. Conf. on Parallel and Distributed Pro-
cessing Techniques and Applications, Vol.II, pp.699–705,
June, 2000.

[6] M. Takata, Y. Kunieda, K. Joe. A Heuristic Approach
to Improve a Branch and Bound based Program Parti-
tioning Algorithm. The proceedings of the 1999 Interna-
tional Workshop on Innovative Architecture, pp.105–114,
November, 2000.

[7] M. Takata, H. Shouno, K. Joe: An Improvement of Pro-
gram Partitioning Based Genetic Algorithm. The proceed-
ings of the International Conference on Parallel and Dis-
tributed Processing Techniques and Applications (PDPTA
’02), Vol.I, pp.215–221, June, 2002.

[8] H. Saito, N. Stavrakos, C. D. Polychronopoulos, A. Nicolau.
The Design of the PROMIS Compiler. Int’l J. of Parallel
Programming, Vol.28, No.2, pp.195–212, 2000.

[9] T. Saito, T. Nakanishi, Y. Kunieda, A. Fukuda. Genetic
Algorithm Based Program Partitioning. Proc. of the Int.
Conf. on Parallel and Distributed Processing Techniques
and Applications, Vol.II, pp.707–712, June, 2000.

[10] T. Yamaguchi, H. Ishiuchi, A. Iwasaka, M. Haneda, H.
Shouno, K. Joe. The Overview of the Paralleilzing Com-
piler PROMIS-NWU. Proc. of IPSJ SIGARC 2001-144-
14, pp.79–84, July, 2001. (in Japanese)

事務局
－40－

