
トランスポジショングラフにおける素な経路
鈴木 康斗, 金子 敬一, 中森 眞理雄

東京農工大学

本論文では, n-トランスポジショングラフにおいて頂点から頂点集合への互いに素な経路問題
に対する nの多項式時間のアルゴリズムを提案する. アルゴリズムは再帰的に記述され, 目的
頂点の位置によりふたつの場合に分けられる. アルゴリズムが与える経路の長さの最大値と
時間計算量のオーダを見積もって示す. また, 計算機実験により提案アルゴリズムの性能評価
を行う.

Node-disjoint Paths in a Transposition Graph
Yasuto Suzuki, Keiichi Kaneko and Mario Nakamori

Tokyo University of Agriculture and Technology

In this paper, we give an algorithm for the node-to-set disjoint paths problem in transposi-
tion graphs. The algorithm is of polynomial order of n for an n-transposition graph. It is
based on recursion and divided into two cases according to the distribution of destination
nodes. The maximum length of each path and the time complexity of the algorithm are
estimated and the average performance is evaluated based on computer experiment.

1 Introduction

Recently, research in parallel and distributed
computation has become more significant
because we cannot expect drastic improve-
ment of performance in sequential compu-
tation in the future. Moreover, extensive
research on so-called massively parallel ma-
chines has been conducted in recent years.
Hence, many complex topologies of intercon-
nection networks[1, 2, 5] have been proposed
to replace simple networks such as hyper-
cubes and meshes. A transposition graph[5]
provides one such new topology. It can in-
clude other topologies as its subgraphs, such
as hypercubes, star graphs and bubble-sort
graphs.

Unfortunately, there still remain unknowns
in several metrics for this topology despite
intensive research activities. Among the un-
solved problems is the node-to-set disjoint
paths problem: Given a source node s and
a set D = {d1, d2, · · · , dk} (s 6∈ D) of k des-
tination nodes in a k-connected graph, find k
paths from s to each di that are node-disjoint
except for s. This is one of the most im-
portant issues in the design and implemen-

tation of parallel and distributed computing
systems[3, 4, 6]. Once these k paths are
obtained, they achieve some fault tolerance;
that is, at least one path can survive with
k − 1 faulty components.

In general, node-disjoint paths can be ob-
tained in polynomial order time of the num-
ber of the nodes by the maximum flow algo-
rithm. However, in an n-transposition graph,
the number of nodes is equal to n!, so in this
case its complexity is too large. In this paper,
we propose an algorithm which is of polyno-
mial order of n instead of n!.

2 Preliminaries

In this section, we introduce definitions of
the transposition operation, transposition
graphs, and the shortest-path routing algo-
rithm in a transposition graph.

Definition 1 For an arbitrary permutation
u = u1u2 · · ·un of n symbols 1, 2, · · · , n, the
transposition operation t(i,j)(u) (1 ≤ i < j ≤
n) is defined as follows:
t(i,j)(u)

= u1 · · ·ui−1ujui+1 · · ·uj−1uiuj+1 · · ·un.

事務局
社団法人 情報処理学会　研究報告IPSJ SIG Technical Report

事務局
2004－MPS－50　(4)

事務局
2004／6／22

事務局
－17－

2134 1234

3214 3124

4123
4213

1423 2413

1243
2143

3142

3412
1432

4312
4132

2431
3421

4321

2314
1324

2341
1342

4231

K L A B

N A K Q

R

F

M

G

O

R

E

C

P H

M I

OP

F L

E
D

C

JN

GB

H
I

D

J Q
3241

T4

Figure 1: An example of transposition graph.

Definition 2 An n-transposition graph, Tn,
has n! nodes. Each node has a unique ad-
dress which is a permutation of n symbols
1, 2, · · · , n. A node which has an address
u = u1u2 · · ·un is adjacent to n(n − 1)/2
nodes whose addresses are elements of the set
{t(i,j)(u) | 1 ≤ i < j ≤ n}.

Figure 1 shows an example of transposi-
tion graph. In an n-transposition graph Tn, a
subgraph induced by nodes that have a com-
mon symbol k at the ith position of their ad-
dresses constitutes an (n − 1)-transposition
graph. In this paper, we denote the subgraph
induced by nodes whose last symbols are k as
Tn−1k. For given nodes s = s1s2 · · · sn and
d = d1d2 · · · dn in Tn, we use the routing al-
gorithm route shown in Figure 2 to obtain
one of the shortest paths between s and d.
We assume that the address of a node is rep-
resented by using a linear array and each ele-
ment of the array consists of a word that can
store the value n. Then its time complexity
is O(n2) and its path length is O(n).

For an arbitrary node u, let N(u) denote
the set of neighbor nodes of u.

3 The algorithm

In this section, we propose an algorithm for
the node-to-set disjoint paths problem in Tn.

procedure route(s, d);
begin

c := s; P := [c];
for i := 1 to n− 1
if ci <> di then begin
find j such that cj = di;
c := t(i,j)(c); P := P ++ [c]

end
end

end;

Figure 2: A shortest-path routing algorithm
route.

3.1 Classification

If n ≤ 2, the problem is trivial. That is, a
2-transposition graph consists of two nodes
and an edge between them. Hence, if one
node is the source, then the other one is the
destination, and the path is the edge itself.
Therefore we assume n ≥ 3 in the following.
We can fix the source node as s = 12 · · ·n,
taking advantage of the symmetric property
of Tn. Let D = {d1, d2, · · · , dn(n−1)/2} be the
set of destination nodes. The algorithm has
recursive structure and it is divided into two
procedures depending on |D\Tn−1n| where
|D\Tn−1n| represents the number of destina-
tion nodes that are not included in Tn−1n.

3.2 Case 1: |D\Tn−1n| ≤ n− 1

This subsection presents the procedure for
the case that |D\Tn−1n| ≤ n− 1.

Step 1 In Tn−1n, by calling the algorithm
recursively, construct node-disjoint
paths from s to (n − 1)(n − 2)/2
arbitrary destination nodes in Tn−1n.

Step 2 If a destination node, say, dx other
than these (n − 1)(n − 2)/2 destination
nodes is on one of the constructed path
from s to, say, dy, then discard the sub-
path from dx to dy and exchange the in-
dices x and y. Repeat this step until no
destination node is on the paths except
for the (n− 1)(n− 2)/2 nodes.

Step 3 Select edges (s, t(i,n)(s)) (1 ≤ i ≤
n− 1). Note that t(i,n)(s) ∈ Tn−1i.

事務局
－18－

Step 4 For each Tn−1i (1 ≤ i ≤ n − 1),
if there exist some destination nodes in
Tn−1i, choose one of the nearest nodes
among them from t(i,n)(s). Construct
the shortest path between these two
nodes.

Step 5 For each Tn−1i (1 ≤ i ≤ n − 1), if
there exists no destination node, choose
one of the destination nodes to which
the path is not yet constructed from
s. Let the chosen node be dz. Select
an edge (N(dz) ∩ Tn−1i, dz) and con-
struct the shortest path from t(i,n)(s) to
N(dz) ∩ Tn−1i.

3.3 Case 2: |D\Tn−1n| ≥ n

This subsection presents the procedure for
the case that |D\Tn−1n| ≥ n.

Step 1 For each destination node di outside
Tn−1n, select two nodes ui and ci satis-
fying the following conditions if possible.

• ci = di,

• ui = (N(ci) ∩ Tn−1n)\D,

• ui = s or ui 6= uj if i 6= j.

Step 2 For each destination node di outside
Tn−1n, if ci for di was not selected in
Step 1, select two nodes ui and ci satis-
fying the following conditions if possible.

• ci ∈ N(di)\D,

• ui = (N(ci) ∩ Tn−1n)\D,

• ui = s or ui 6= uj if i 6= j,

• ci 6= cj if i 6= j.

Step 3 For each destination node di outside
Tn−1n, if ci for di was not selected in pre-
vious steps, select three nodes ui, ci and
bi satisfying the following conditions.

• ci ∈ N(di)\D,

• bi ∈ (N(ci)\Tn−1n)\D,

• ui = (N(bi) ∩ Tn−1n)\D,

• ui = s or ui 6= uj if i 6= j,

• bi 6= bj if i 6= j,

• ci 6= cj if i 6= j,
• bi 6= cj for any i and j.

Step 4 Let M and U be a set {di | di 6∈
Tn−1n} ∪ {ci | ci 6= di} ∪ {bi} and a set
{ui}, respectively.

Step 5 Select edges (s, t(i,n)(s)) (1 ≤ i ≤
n− 1). Note that t(i,n)(s) ∈ Tn−1i.

Step 6 For each Tn−1i (1 ≤ i ≤ n − 1),
if there exist some nodes in M ∩ Tn−1i
and a path from t(i,n)(s) is not yet con-
structed, choose one node vi among the
nodes in M ∩ Tn−1i such that vi is one
of the nearest nodes from t(i,n)(s) in
M ∩ Tn−1i.

Step 7 For each vi (1 ≤ i ≤ n − 1), if vi

is a destination, say, dx, construct the
shortest path from t(i,n)(s) to dx, and
update M and U by M\{bx, cx, dx} and
U\{ux}, respectively. In this step, if M
is updated, go back to Step 6.

Step 8 For each vi (1 ≤ i ≤ n − 1), if vi is
one of ci’s, say, cx, construct the short-
est path from t(i,n)(s) to cx and select
an edge (cx, dx), and update M and U
by M\{bx, cx, dx} and U\{ux}, respec-
tively. In this step, if M is updated, go
back to Step 6.

Step 9 For each vi (1 ≤ i ≤ n − 1), vi is
one of bi’s, say, bx. Construct the short-
est path from t(i,n)(s) to bx. Update M
and U by M\{bx, cx, dx} and U\{ux},
respectively.

Step 10 For each Tn−1i (1 ≤ i ≤ n − 1),
if there exists no node in M ∩ Tn−1i
and a path from t(i,n)(s) is not con-
structed, choose one destination node
from M , say, dx, select an edge (N(dx)∩
Tn−1i, dx), construct the shortest path
from t(i,n)(s) to N(dx) ∩ Tn−1i, and up-
date M and U by M\{bx, cx, dx} and
U\{ux}.

Step 11 In Tn−1n, by calling the al-
gorithm recursively, construct node-
disjoint paths from s to the nodes in
(D ∩ Tn−1n) ∪ U .

事務局
－19－

�

���

���

���
��	

��
� �
�

��
	

����������������������� ����! ��!"� �$#�������%

&$��'(!"&$)�&
��*(+ ����#�+�-,/.-� �

�

Figure 3: Length of each path.

Step 12 For each ui in U , construct a path
from ui to di via bi and ci if any.

Theorem 1 For an n-transposition graph,
n(n − 1)/2 paths constructed by our algo-
rithm are node-disjoint except for s. The
time complexity and the maximum length of
each path are O(n7) and 3n− 5, respectively.

4 Computer experiment

To evaluate the algorithm performance, we
conducted the following computer experi-
ment. The algorithm is implemented by the
programming language C. The program is
compiled by gcc with -O2 option and ex-
ecuted on a target machine with an Intel
Celeron 400MHz CPU and a 128MB memory
unit.

1. Fix the source to be 12 · · ·n and se-
lect destinations randomly other than
the source.

2. Apply the algorithm and measure the
length of each path and execution time.

Experiment is performed 1,000 times for
each n from 2 to 50. Results are shown in Fig-
ure 3 and Figure 4. From these figures we can
observe that the average length of each path
and the average time of paths construction
are of polynomial order and approximately
O(n) and O(n5.5) in their ranges.

���������
�
	��������
��	�����
�
	���
�
	��

�
���

���

����
��
���
�����
��
��� ��
��� �
�� �

!#"%$�&'! �)(&�*�!�+-,�$�+-. (./$�!10�&�*�,�2

�3 � &��0 �4����5��� !�6874����5��� !�6 ��	�4����5��� !�6 �

Figure 4: Time of paths construction.

5 Conclusions

In this paper, we proposed a polynomial algo-
rithm for the node-to-set disjoint paths prob-
lem in n-transposition graphs whose time
complexity and the maximum length of each
path are O(n7) and 3n− 5, respectively. We
also conducted the computer experiment to
show the average length of each path being
O(n) and the average time being O(n5.5).

Acknowledgement

This work was partly supported by Grant-in-Aid
for Scientific Research (C) of JSPS under Grant
No. 16500015 and Grant-in-Aid for JSPS Fellows.

References

[1] S.B. Akers et al., “A group-theoretic model
for symmetric interconnection networks,”
IEEE Trans. Comp., 38(4):555–566, 1989.

[2] P.F. Corbett, “Rotator graphs: An effi-
cient topology for point-to-point multipro-
cessor networks,” IEEE Trans. Parallel &
Distributed Syst., 3(5):622–626, 1992.

[3] Q. Gu et al., “Node-to-set disjoint paths
problem in star graphs,” Inf. Proc. Lett.,
62(4):201–207, 1997.

[4] K. Kaneko et al., “Node-to-set disjoint paths
problem in pancake graphs,” IEICE Trans.
Inf. & Syst., E86-D(9):1628–1633, 2003.

[5] S. Latifi et al., “Transposition networks as
a class of fault-tolerant robust networks,”
IEEE Trans. Comp., 45(3):230–238, 1996.

[6] M.O. Rabin, “Efficient dispersal of informa-
tion for security, load balancing, and fault
tolerance,” JACM, 36(2):335–348, 1989.

事務局
－20－

