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Dynamic Load Balancing for Parallel Modified PrefixSpan

MakOTO TAKAKI, KEIICHI TAMURA ,#t TOSHIHIDE SUTOUt
and HAJIME KITAKAMI#H

Motif is featured pattern which is biologically meaningful in amino acid sequences. Motif is
discovered from frequent patterns. In order to extract the frequent patterns that can become
motifs in amino acid sequences at high-speed, a parallel Modified PrefixSpan is proposed.
This paper presents a dynamic load balancing for the parallel Modified PrefixSpan to ex-
tract frequent patterns at high-speed from the amino acid sequences on a PC cluster. The
parallel Modified PrefixSpan exploits a task-based parallelism that distributes tasks among
the computers on the PC cluster. We present a dynamic load balancing methodology called
master-task-steal. The master-task-steal-based dynamic load balancing minimizes idle time
when the distributed workload is unbalanced on the PC cluster.

We have been developing a parallel Modified Pre-

1. Introduction
fixSpan (called PMPS)!® to extract the frequent

Motifs in biologically are assumed to be related to
a function of proteins that have been preserved in
the evolutionary process of an organism. The Motif
is discovered from frequent patterns in amino acid
sequences.

In order to discover the motifs efficiently, a Mod-
ified PrefixSpan (called MPS)6) with a rich func-
tional frequent pattern extraction algorithm is pro-
posed. The MPS can extract the frequent patterns
including fixed-length wildcard regions and existing

in different positions in amino acid sequences.
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patterns at high-speed on a PC cluster. The PMPS
exploits a task-based parallelism which distributes
tasks among the computers on the PC cluster (a
computer on the PC cluster is called a site) and
master-worker parallelism.

This paper presents a dynamic load balancing
for the PMPS. The characteristic of the dynamic
load balancing for the PMPS is a master-task-steal
(MTS) methodology. The MTS-based dynamic
load balancing is a method of declustering tasks
from some working sites to sites that have finished
all task. The MTS methodology minimizes idle
time when the distributed workload is unbalanced
on the PC cluster.

We evaluated the PMPS with the MTS-based dy-
namic load balancing on an actual PC cluster. In

the experiments, two types of data sets that in-
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clude motifs named Zinc Finger and Kringle were
used. The speedup of the PMPS with the MTS-
based dynamic load balancing is superior to that of
the previous implementation of the PMPS.

The rest of the paper is organized as follows: Sec-
tion 2 discusses related work. Section 3 explains the
MPS. Section 4 describes the PMPS and the MTS-
based dynamic load balancing technique. Section
5 shows the experiment results. Section 6 is the

conclusions.
2. Related Work

There are many studies on frequent pattern ex-
traction in sequence databases. Most of these stud-
ies adopt, an apriori like®), a candidate generation-
and-test approach. The apriori like approach may
still be expensive, especially when long and numer-
ous patterns are encountered. In order to extract
frequent patterns, a new methodology, called fre-
quent pattern growth (FP-Growth), was developed
by Jiawei Han and Jian Pei®. In this approach,
a divide-and-conquer philosophy is used to project
and partition databases based on the currently dis-
covered frequent patterns and grow such patterns
into longer ones in the projected databases. This
approach mines the frequent patterns without can-
didate generation.

The proposed apriori like or FP-Growth frequent
pattern extraction algorithms focus on business
field data, such as market basket data®, episode
data®, and network log data. These algorithms
are not adapted to bioinformatics field data. The
MPS is proposed to extract frequent patterns in
amino acid sequences. The MPS is an extension of
the PrefixSpan”, which is based on the FP-Growth
approach. The key idea of the MPS is to examine
only prefix subsequences and to project only their
corresponding postfix subsequences into projected
databases.

To the best of our knowledge, there is no study on
the parallel processing of FP-Growth frequent pat-
tern extraction algorithms. There are many studies
on the parallel processing of the apriori like ap-
proach?®1Y However, these parallelisms are not
adapted to the FP-Growth approach. The main

cost of the apriori like approach is candidate gener-
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ation and scanning sequence databases. The main
cost of the FP-Growth approach is the construc-
tion of frequent patterns from postfix databases and
the generation of the projected database of frequent

patterns.

3. Modified PrefixSpan

3.1 Problem Definition

In this section, we first define the problem of fre-
quent pattern extraction in the protein sequences.
Let X={A,C,D,E,F, G,H, [, K, L, M, N, P, Q,
R, S, T, V, W, Y } be a set of all letter alphabet
in the amino acid sequences. Sequence s is denoted
as (a1az---am), where a; is a letter, i.e., a; € X,
a; = s[j], for 1 < j < m. Sequence database S is a
set of tuples (sid, ss;a), where sid is a sequence id
and ss;q iS a sequence.

A k-length pattern is denoted as pat® = (A1 —
z(i1) — A2 — z(i2) — -+ — x(ik—1) — Ax). Sym-
bol A; is called a character element. Symbol (—)
means that the next element is continued. Sym-
bol z(i,) represents fixed-length wildcard regions
(where 0 < 4, < maz_wc, the maxium length of
a fixed-length wildcard region in the frequent pat-
terns is denoted as maz_wc).

The support of the k-length pattern pat® in S is
the number of tuples in S containing pat®. Given
a positive integer, min_sup as the support thresh-
old, the k-length pattern is called a k-frequent (se-
quential) pattern if pat® is contained by at least
min_sup tuples. The k-frequent pattern pat” is rep-
resented as “pat® : ent”, if the support of pat® is
cnt.  Supposing that there are n k-frequent pat-
terns extracted from S, these are denoted as P, =
{ (pat®) : enty,(pat¥) : enta, - -, (patk) : ent,, }.

Each pat® has a projected database that keeps
next positions of the rightmost characters of pat”®.
It is denoted as PDB(pat®) = {(sid,pos)| pos is
the next position of the rightmost character of pat®,
where 1 < pos <|| $sia || }-

3.2 MPS Algorithm

Fig.1 shows the algorithm of MPS.

e phase 1:

The algorithm scans the sequence database
S once to find all 1-frequent patterns in the

sequences. FEach 1-frequent pattern has a
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MPS(min_sup,max_wc)
PDBLIST :=¢ ;
/* PDBLIST is a set of projected database */
create Py and PDBLIST by scanning S;
while (PDBLIST # ¢ )

NEXT_PDBLIST:=¢ ;

for all PDB(pat®) € PDBLIST

/* k is positive integer */

NEXT_PDBLIST :=
NEXT_PDBLISTU BMPS (min_sup,max_wc ,PDB(patk ));

end_for;

swap (PDBLIST,NEXT_PDBLIST) ;
end_while;
end;

subroutine BMPS(min,sup,max,wc,PDB(patk))
TMP_PDBLIST :=¢> ; NEW_PDBLIST :=¢) ;
for w = 0 to max_wc
for all (i,j) € PDB(path)
patk+1 =
pat? @-x(W)-©@s; [j+ul;
/*(© means concatenationk/
if PDB(pat®t1) S TMP_PDBLIST then
/*> means not inclusion*/
TMP_PDBLIST:=TMP_PDBLISTUPDB (pat® 1) ;
end_if;
PDB(pat® 1) :=
PDB(pat® 1) U(i, jHwrl);
end_for;
end_for;
for all PDB(pat®*!) € TMP_PDBLIST
if support(PDB(pat*t1)) > min_sup then
NEW_PDBLIST:=NEW_PDBLISTUPDB (pat®11);

Pry1 := Ppy1U <pat®*1>:support (PDB(pat®t1));
end_if;
end_for;
return NEW_PDBLIST;
end;

Fig.1 MPS Algorithm

Table 1 Example of Amino Acid Sequences

sequence id sequence
1 MFKALRTIPVILNMNKDSKLCPN
2 MSPNPTNHTGKTLR

PDB(pat"). In addition, the PDB(pat) is in-
serted into PDBLIST.

e phase 2:
For each PDB(pat*) (where k > 1) in the
PDBLIST, the algorithm constructs (k + 1)-
length patterns based on PDB(pat®). If the
support of a (k+1)-length pattern is more than
min_sup, the (k+1)-length pattern is a (k+1)-
frequent pattern. Each (k + 1)-frequent pat-
tern has a PDB(pat**!). If no (k+1)-frequent
pattern is extracted, the algorithm terminates
the frequent pattern extraction. Otherwise,
k:=k+1 and go to “phase2”;

3.3 Example

Let our running database be a sequence database

S given in Table 1. Each parameter is as follows:

0110

anoy (=)

PDB(<K>) = {(1,4),(1,17),(1,20),(2,12)}

(1) wildcard=0  (2) wildcard=1
<K-x(0)-L>11 <K-x(1)-L>:2
<K-x(0)-T>:1 <K-x(1)-S>:1

PDB(<K-x(1)-L>) = {(1.,6),(2,14)}
(1) wildcard=0 (2) wildcard=1
<Kex(1)-LX(0)}R>:2 <Kox(1}-Lox(1)-To:1 KA'-E‘PV'LM_’;KDSKLCPN
\ R

Fig.2 Example of Pattern Growth Steps in the MPS

KALRTIPVILNMNKDSKLCPN

=

min_sup = 2, mar_wc = 1. The 1-frequent pat-
terns are like Pr={(M) : 2,(K) : 2,(L) : 2,(R) :
2,(T) : 2,(P) : 2,(N) : 2,(S) : 2}. In Fig.2,
the projected database of 1-frequent pattern {(K) :
2} is represented by PDB((K)) ={(1,4), (1,17),
(1,20), (2,12)}. First, letters s1[20 + 0] = (L) and
s2[12 + 0] = (T") are appended to (K — z(0)—) if
the number of wildcards is 0. The 2-length patterns
{{K—=2(0)—L):1,(K—xz(0)—T) : 1} are not 2-
frequent patterns. Next, if the number of wildcards
is 1, letters s1[4 + 1] = (L), s1[17 + 1] = (S), and
s2[12+1] = (L) are appended to (K —xz(1)—). Pat-
tern (K —x(1) — L) is a 2-frequent pattern because
the support of (K —x(1)— L) is more than min_sup.
The 3-frequent pattern (K — z(1) — L — z(0) — R)

is extracted in the same way.

4. PMPS with MTS-based Dynamic
Load Balancing

4.1 Master-Worker Parallelism

The PMPS (parallel Modified PrefixSpan) is
based on the master-worker parallelism. There are
two types of processes in the PMPS: the master
process and the worker process. The master and

worker processes work as follows.

Master Process:

(1) First of all, the master process extracts 1-
frequent patterns to s-frequent patterns where
s is a user-specified threshold. The process,

which extracts all k-frequent patterns (where
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min_sup=2, max_wc=1

Threshold=1
Master Process

End Time of Execution

Idle Time Idle Time Idle Time

task8 task7 taské

k2
tasks tas

task3
T taskd

Worker Process 1 Worker Process 2 Worker Process 3 Worker Process 4

Fig.3 Example of Parallel Pattern Growth Steps in the
PMPS

k > s) from an s-frequent pattern, is called a
task. Each task is inserted into a global task
pool.

(2) The master process sends a task to a worker
process when the mater process receives the
global task request from the worker process.

(3) If the global task pool is not empty, the master
process returns to process (2). Otherwise, the
master process sends a termination signal to all
worker processes and terminates processing.

Worker Process:

(1) The worker process sends a global task request
to the master process.

(2) If the worker process receives a task from the
master process, the worker process extracts all
k-frequent patterns (where k > s) from an s-
frequent pattern and returns to process (1). If
the worker process receives the termination sig-
nal, the worker process sends all results to the
master process and terminates processing.

4.2 Dynamic Load Balancing

4.2.1 Master-Task-Steal Methodology

The execution time becomes increasingly unbal-

anced when the workload of an assigned task at
each worker process is very unbalanced. A worker
process with extremely big tasks has to continue
the processing of tasks with one process though
other worker processes have finished the processing
of tasks.

For example, as shown in Fig.3, the master

process generates eight tasks (where threshold=1).

0120

Master Process | global task pool

5
request -
¥

steal request

sesesscscsesesssses

Worker Process 1 Worker Process 2 Worker Process 3 Worker Process 4

Fig.4 Conceptual Figure of Master-Task-Steal
Methodology

Each task is assigned to each site. Finally, each
worker process that has finished the processing of
tasks, namely, worker processl, worker process2,
and worker process3 waits for worker process4. This
wait generating idle time in each worker process.
Therefore, an effective speedup ratio cannot be
achieved.

The task scheduling algorithms are not adapted
to the PMPS. The processing of the task can be
done independently. However, it is impossible to
estimate the cost of the task because the cost of
the task depends on the feature of amino acid se-
quences.

To overcome this performance limitation on the
PMPS, a master-task-steal (MTS)-based dynamic
load balancing technique is presented. A key idea of
the MTS-based dynamic load balancing is that the
balance of the workload on all sites is kept by on-
demand declustering distributed tasks. In the MTS
methodology, the master process gathers all tasks
located in each worker process if the global task pool
is empty when the master process receives a global
task request.

In Fig.3, worker process1 is the first to finish pro-
cessing the task. Worker processl sends a global
task request to the master process. However, the
global task pool is empty, and there are no tasks to
distribute. In the MTS approach, master process
sends a steal request to all the worker processes. In
Fig.4, the worker process, which has received the

steal request, sends all tasks located in the local task
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pool to the global task pool. There are seven gath-
ered tasks in this case. One of these tasks is then
assigned to worker process 1.

4.2.2 Master-Task-Steal Algorithm

This section describes an algorithm of MTS-
based dynamic load balancing. The processes
shown in Section 4.1 are changed as described in
the follows.

The worker process extracts from (s+1)-frequent
patterns to (s + s’ + 1)-frequent patterns where s’
is a user-specified threshold. The process that ex-
tracts all k-frequent patterns (where k > (s+s'+1))
from an (s+s'+1)-frequent pattern is called a local
task.

Each worker process has its own local task pool
which can store the tasks. Each local task is in-
serted into the local task pool. The worker process
pops a local task from the local task pool and ex-
ecutes the local task. The worker process sends a
global task request to the master process if the local
task pool is empty.

The master process sends a steal request as a
broadcast message to all worker process if the global
task pool is empty. The worker process sends the
local tasks to the master process when the worker
process receives the steal request from the master
process. The master process inserts all received lo-
cal tasks into the global task pool. Then the master

process re-distributes them to the worker processes.
5. Performance Evaluation

We implemented the PMPS with the MTS-based
dynamic load balancing on an actual PC cluster.
There are 16 personal computers, each configured
with a 2.53GHz Pentium4 processor, 1.5GB mem-
ory, and 80GB disk. The personal computers were
connected to a 100 Mbit/sec Ethernet. RedHat9.0
was used as the operating system. MPICH version
1.2.5 was used as the MPI library, and GNU g++
ver.3.2.2 was used as the C++ compiler.

The data sets used in this evaluation were pro-
vided by PROSITEY. The data set which includes
motif named Kringle has 70 data records (total-
length: 23,385 bytes; average-length: 334 bytes;
maximum-length:

length: 53bytes). The data set which includes mo-

3176 bytes; and minimum-

0 130

tif named Zinc Finger has 467 data records (total-
length: 245,595 bytes; average-length: 525 bytes;
maximum-length:
length: 34bytes).

For this experiment, each parameter was as fol-

4036 bytes; and minimum-

lows: Kringle; min_sup=14 (20%); maz_-wc=5.
Zinc Finger; min_sup=140 (30%); maz_wc=>5.
First, we use dataset including kringle. Fig.5
shows the speedup ratios of the previous imple-
mentation of the PMPS and Fig.6 shows the
speedup ratios of the PMPS with the MTS-based
The threshold is de-

noted as Threshold(s,s’), where s and s’ is a

dynamic load balancing.

user-specified threshold of the master process and
threshold of the worker processes. Fig.5 shows that
enlarging the threshold of the master process in-
creases the speedup ratio to the ideal. It is because
the grain of the task became fine and the workload
of each worker process became uniform. When the
threshold of the master process is 5, the speedup
ratio is lower than when it is 4. The serial pro-
cessing in the master process becomes the bottle-
neck. As shown in Fig.6, when the thresholds were
Threshold(1,1), the speedup ratio was lower than
the other speedups because the grain of the tasks
was not fine enough. If the grain of the tasks is
rough, the tasks for redistribution decrease. Oth-
erwise, the speedup ratio obtained was 15 times
higher than that obtained using just one processor.

Fig.7 shows the execution time of each worker
process without MTS-dynamic load balancing
when 16 machines are used (Threshold(1,0)). The
entire execution time depends on worker process 2.
The idle time is generated in other worker pro-
cesses. Fig.8 shows the execution time of each
worker process with MTS-dynamic load balancing
when 16 machines are used (T'hreshold(1,3)). The
execution time of each worker process is almost
equal, and the uniformity of workloads can be con-
firmed.

Fig.9 shows the communication frequency and
amount of communication. When MTS-basd dy-
namic load balancing is integrated the maximum
total amount of communication is about 1.8Mbytes.
Such communication hardly influences the execu-

tion time.
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Fig.5 Speedup without MTS-Based Dynamic Load
Balancing (Kringle)
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Fig.6 Speedup with MTS-Based Dynamic Load
Balancing (Kringle)

Fig.10 and Fig.11 show the speedup ratios us-
ing the dataset including Zinc Finger. In Fig.11,
the speedup ratio was greater than the number of
machines. This is because processing was slower
when using one machine due to a memory short-
age. Effective speedup can also be obtained, as it

was in the case of using Kringle.
6. Conclusions

This paper presents the MTS-based dynamic load
balancing for the PMPS. The speedup of the PMPS
with the MTS-based dynamic load balancing is
higher than that of a previous implementation. The

experimental results show that the MTS-based dy-

0 140

120

I Execution Time
100 Average Execution Time|

Execution Time (sec)
@
3

20

7 8 9 10 11 12 13 14 15 16
Worker ID

Fig.7 Execution Time of Each Worker Process without
MTS-Based Dynamic Load Balancing (Kringle)

B Execution Time
100 ------ Average Execution Time

Execution Time (sec)
.
3

zoumllllulllll

0

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Worker ID

Fig.8 Execution Time of Each Worker Process with
MTS-Based Dynamic Load Balancing (Kringle)

namic load balancing minimizes idle time when dis-
tributed workload is unbalanced on the PC clusters.

In the future, it will be necessary to verify the
results by using a variety of amino acid sequences.
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