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本論文は、木文法 (TAG)の構造的曖昧性の問題を解決する理論的枠組みを提供する。これは特に RNA2次
構造に代表される構造付き文字列から共通構造をアラインメント手法で抽出し、結果を TAGでモデリング
する際に問題となる。
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In this paper, we are concerned with a structural ambiguity problem of tree adjoining grammars(TAGs),
which is an important and essential problem when we try to model consensus structures of given set of
ribonucleic acid(RNA) secondary structures by TAGs.

1 Introduction

Tree adjoining grammars (TAGs) were originally
proposed as tree-generating systems by linguistic
considerations. Among several features of TAGs, a
descriptive capability of TAGs is of most interest to
us. The idea that the symbols in a string derived
at the same time in a derivation process forms a
structure on the string has been utilized to model
strings with structural information by grammars.
We call such strings structure-annotated strings(SA-
strings). The reason why TAGs have especially at-
tracted great attention in broad fields is the ability of
TAGs to describe certain discontinuous structures.
For example, a string such as xuyvxRwyR, where u,
v, w, x and y are strings and xR(yR) denotes the re-
versal of x(y), can be readily modeled by a derived
tree of TAGs, but not expressed by any context-free
grammars(CFGs). The structural feature of this ex-
ample is called crossing dependency, and this extra
power of TAGs seems to be just the right kind for
a certain practical application of modeling bioinfor-
matical sequence data.

Ribonucleic acids(RNAs) form secondary struc-
tures (2nd-structures) by hydrogen bonds between
base pairs (A, U), (C, G) and (G, U). Therefore, we
can regard RNA 2nd-structures as SA-strings. Here,
the important fact to note is that a typical type
of RNA 2nd-structures called pseudoknot forms the
crossing dependency(See Fig.1). The existence of
pseudoknots leads us to an application of TAGs to
modeling RNA 2nd-structures.
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Figure 1: (a): pseudoknot. (b): its interpretation as
an SA-string.

In this study, we will focus on modeling RNA 2nd-
structures as derivations of TAGs and extracting
consensus structures by aligning them. Our recent
study intends to model the resulting alignment by
TAGs. If we adopt conventional alignment methods
[2, 5], then we may fail in modeling the resulting
alignment by TAGs. Therefore, we will formalize
an alignment problem for modeling given RNA 2nd-
structures by TAGs. However, there exist a num-
ber of derivations corresponding to an RNA 2nd-
structure. Then, the question arises of which deriva-
tion we should choose for each 2nd-structure. This
is the structural ambiguity problem of TAGs. For
dealing with this problem appropriately, we will in-
troduce a notion of edit distance between SA-strings
which deals with the structural ambiguity problem,
and then present a pairwise alignment algorithm for
two SA-strings based on the edit distance.

2 Tree Adjoining Grammars

For p, q ∈ N∗, we write p 6 q iff there exists r ∈ N∗

s.t. p · r = q, and p < q iff p 6 q and p 6= q.
Let V be a finite alphabet, and Σ ⊂ V . Σ is
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Figure 2: Tree adjoining operation

called a terminal alphabet, while V − Σ is called
a nonterminal one. V ∗ denotes the set of all fi-
nite strings over V , and λ denotes the empty string.
Given a string S, S[i] denotes the i-th symbol of
S, and S[i..j] denotes the substring from S[i] to
S[j] if i ≤ j , otherwise S[i..j] = λ. The length
of S is denoted by |S|. The concatenation of n
substrings S[x1..y1], S[x2..y2], · · · , S[xn..yn] of S is
denoted by S[x1..y1;x2..y2; · · · ;xn..yn], where yi <
xi+1(1 ≤ i ≤ n − 1). We abbreviate the notation to
S[y1;x2..y2; · · · ;xn] when x1 = 1 and yn = |S|.

A tree over V is a function γ : ∆γ → V , where ∆γ

is a finite subset of N∗ s.t. (1) if q ∈ ∆γ and p < q,
then p ∈ ∆γ ; (2) if p·j ∈ ∆γ , then p·1, . . . , p·(j−1) ∈
∆γ . By τV , we denote the set of all trees over V .

The yield is a function Y : τV → V ∗ defined recur-
sively as follows:

Y (γ) = γ(0), if ∆γ = {0};
Y (γ) = Y (γ/1)Y (γ/2) · · ·Y (γ/j),

if 1, 2, . . . , j ∈ ∆γ and j + 1 6∈ ∆γ .

A tree adjoining grammar (TAG) G over (V, Σ) is
defined as a pair G = (I ,A ). I is called the set of
initial trees of G, and A the set of adjunct trees of
G. I ∪A is called the set of elementary trees of G.
The leaf of an adjunct tree β ∈ A with the label of
root is called the foot node of β.

Let γ ∈ τV , p ∈ ∆γ and β ∈ A . If γ(p) = β(0)
and NA constraint is not associated with p, then
β is adjoinable to γ at p, and the tree obtained by
adjoining β to γ at p, denoted by γ[p, β], is defined
as γ[p, β] = γ\p ∪ p · β ∪ (p · r) · (γ/p), (See Fig. 2),
where r is the address of the foot node of β, and NA
constraint is as follows:

Null Adjoining (NA): For a node n in elemen-
tary trees, no tree in A can be adjoined at n.

A node is inactive iff NA constraint is associated
with the node, and active otherwise.

An elementary tree is simple linear iff all but one
node in the tree are inactive. A TAG is simple linear

iff all elementary trees are simple linear. Especially,
a simple linear TAG(SLTAG) G over (V, Σ) is said
to be universal iff |V − Σ| = 1. Universal SLTAGs
prove useful in modeling RNA 2nd-structures [1, 4].

Let G = (I ,A ) be an SLTAG. For trees γ, γ′ ∈
τV , we write γ `β γ′ iff there exists β ∈ A s.t. β is
adjoinable to γ at a unique node of γ, and γ′ = γ[β].

Here, we consider derivation processes of γf ∈ τV

in G. Suppose that there exist an initial tree γ0 ∈ I ,
trees γ1, . . . , γn and adjunct trees β1, . . . , βn s.t.

γ0 `β1 γ1 `β2 γ2 `β3 · · · `βn γn = γf . (1)

We call a sequence β1 · · ·βn α-derivation of γf in
G. By α(γ,G), we denote the set of α-derivations
of γ in G. We define the set τ(G) of derived trees
in G as τ(G) = {γ ∈ τV

∣∣ |α(γ,G)| ≥ 1}. Then, we
define the set α(G) of α-derivations in G as α(G) =⋃

γ∈τ(G) α(γ,G).
Let S be a string over Σ. We consider a parti-

tion C of the set of integers from 1 to |S|. We call
the string S with its partition C structure-annotated
string (SA-string), denoted by (S,C).

For γ ∈ τ(G), we say that an α-derivation Dα

of γ corresponds to (S,C) iff (1) Y (γ) = S and (2)
S[i1], . . . , S[ik] are derived by some adjunct tree in
Dα at a time iff {i1, . . . , ik} ∈ C. By α((S,C), G),
we denote a set of α-derivations in α(G) which cor-
respond to (S,C).

[Structural Ambiguity Problem of TAGs]

Let G be a TAG. We say that G is structurally am-
biguous iff ∃(S,C), |α((S,C), G)| > 1.

One of the causes of structural ambiguity is the
existence of more than one active node in a tree at
which some adjunct tree is adjoinable. We consider
only SLTAGs so that we can not find this kind of
structural ambiguity, but SLTAGs still have the kind
of structural ambiguity shown in Fig.3.

3 Edit Distance

We first define three kinds of edit operations, insert,
delete and replace, on α-derivations of universal SLT-
AGs. Inserting (represented as λ → b) is to insert a
new adjunct tree into Dα. For an adjunct tree in Dα,
deleting the adjunct tree (as a → λ) is to delete it
from Dα, and replacing the adjunct tree (as a → b)
is to replace it with another.

Let µ be a cost function which assigns a nonneg-
ative real number µ(a → b) to each edit operation
a → b. We extend µ to a sequence ES = e1, . . . , en

of edit operations by letting µ(ES) =
∑n

i=1 µ(ei).
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Figure 3: A structural ambiguity of TAGs.

For α-derivations Dα and D′
α, we define a triplet

(M,Dα, D′
α) as a one-to-one mapping M from Dα

to D′
α, where M is a subset of direct product

Dα × D′
α s.t. for any pair of (Dα[i1], D′

α[j1]) and
(Dα[i2], D′

α[j2]) in M , i1 < i2 iff j1 < j2.
For a mapping M , by dom(M) and rng(M), we

denote the domain of M and the range of M , respec-
tively. Then we define the cost of M as

µ((M, Dα, D′
α)) =

X

a6∈dom(M)

µ(a → λ) +

X

b6∈rng(M)

µ(λ → b) +
X

(a,b)∈M

µ(a → b)

Lemma 1. For any sequence ES of edit opera-
tions transforming Dα to D′

α, there exists a mapping
(M,Dα, D′

α) s.t. µ((M,Dα, D′
α)) ≤ µ(ES).

Then, based on Lemma 1, we define an edit dis-
tance between two α-derivations as the minimum
cost of mapping from one to the other. Formally,
the edit distance between two α-derivations Dα and
D′

α is defined as follows:

D(Dα, D′
α) = min

M
{µ((M, Dα, D′

α))}.

Finally, we introduce the notion of an edit dis-
tance between two SA-strings. Note that it essen-
tially deals with the structural ambiguity problem of
SLTAGs. An edit distance between two SA-strings
(S,C) and (S′, C ′) is defined as follows:

D((S, C), (S′, C′), G) = min
Dα,D′

α

˘

D(Dα, D′
α)

˛

˛

Dα ∈ α((S, C), G) and D′
α ∈ α((S′, C′), G)

¯

,

4 The Alignment Problem for
SA-strings

4.1 Important properties of SLTAGs

Let β be a simple linear adjunct tree with active
node at p where Y (β) = a1 · · · aiXai+1 · · · aj and
β(0) = X. Here note that there must exist indices i′

and j′ s.t. Y (β/p) = ai′ · · · aiXai+1 · · · aj′ (1≤ i′≤ i,
i+1 ≤ j′ ≤ j). We define the four subsequences of
Y (β) by LU(β) = a1 · · · ai′−1, LD(β) = ai′ · · · ai,
RD(β) = ai+1 · · · aj′ , and RU(β) = aj′+1 · · · aj .

Let G be an SLTAG. For an SA-string (S,C), let
β1 · · ·βn ∈ α((S,C), G) and γ0 · · · γn be its corre-
sponding derived trees satisfying formula (1).

Property 1. For every i with 0 ≤ i ≤ n, there
exist four indices xi, yi, zi and wi s.t. 0 ≤ xi < yi

and yi − 1 ≤ zi < wi ≤ |S| + 1. The quadruple
(xi, yi, zi, wi) is called factor of γi, and factorizes
Y (γi) into three substrings of S as follows:

Y (γi) = S[1..xi]S[yi..zi]S[wi..|S|],

where

S[1..xi] = LU(β1) · · ·LU(βi),
S[yi..zi] = LD(βi) · · ·LD(β1)RD(β1) · · ·RD(βi),
S[wi..|S|] = RU(βi) · · ·RU(β1).

For β1 · · ·βn ∈ α((S,C), G), we call its pre-
fix β1 · · ·βi α-prefix of (S,C). If an α-prefix of
(S,C) derives a tree whose factor is (x, y, z, w),
then we say that the α-prefix derives a sub-SA-
string (S,C)[x; y..z;w] = (S[x; y..z;w], C[x; y..z;w])
of (S,C), where C[x; y..z;w] is a set of structures in
C defined on the string S[x; y..z;w].

By α((S,C)[x; y..z;w], G), we denote the set of α-
prefixes of (S,C) which derive (S,C)[x; y..z;w].

Proposition 1. λ ∈ α((S,C)[x; y..z;w], G) iff x =
0, y − 1 = z, and w = |S| + 1 hold.

4.2 A DP-algorithm

Let G be a universal SLTAG. For SA-strings (S,C)
and (S′, C ′), we describe a DP-algorithm that com-
putes D((S,C), (S′, C ′), G) in O(|S|4|S′|4) time.

An entry DP (x, y, z, w;x′, y′, z′, w′) denotes the
minimum value of edit distance between an α-prefix
of (S,C) which derives (S,C)[x; y..z;w] and an α-
prefix of (S′, C ′) which derives (S′, C ′)[x′; y′..z′;w′].
The following recurrence relation would suffice for
the development of a DP-algorithm.

Recurrence 1. For any x, y, z, w, x′, y′, z′, w′ ∈ N,
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Case 1: (See Proposition 1) if x = 0, y − 1 = z, w =
|S| + 1, x′ = 0, y′ − 1 = z′, and w′ = |S′| + 1, then
DP (x, y, z, w; x′, y′, z′, w′) = 0.

Case 2: otherwise,

DP (x, y, z, w; x′, y′, z′, w′) =

min
β,β′
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:

DP (x − `u(β), y + `d(β),
z − rd(β), w + ru(β);
x′, y′, z′, w′) + µ(β → λ),

DP (x, y, z, w; x′ − `u(β′), y′ + `d(β′),
z′ − rd(β′), w′ + ru(β′))

+µ(λ → β′),

DP (x − `u(β), y + `d(β),
z − rd(β), w + ru(β);
x′ − `u(β′), y′ + `d(β′),
z′ − rd(β′), w′ + ru(β′))

+µ(β → β′),

∞,

where β and β′ are adjunct trees satisfying the fol-
lowing condition:

Condition 1.

1. The subsequence of S corresponding to Y (β)
forms a structure in C[x; y..z; w].

2. LU(β) = S[x−`u(β)+1 .. x],

3. LD(β) = S[y .. y+`d(β)−1],

4. RD(β) = S[z−rd(β)+1 .. z],

5. RU(β) = S[w .. w+ru(β)−1].

The same condition must apply to β′, x′, y′, z′, w′,
S′, and C′[x′; y′..z′; w′].

Lemma 2. In Case 2, all candidates of β and β′

can be enumerated in O(ξξ′|A |2) time, where ξ is
the maximum cardinality of structures in C, and ξ′

is the maximum cardinality of structures in C ′.

Based on Recurrence 1, one can easily design a
DP-algorithm to compute the edit distance between
(S,C) and (S′, C ′) as follows:

1. procedure CONSTRUCT(DP, G)
begin

for x = 0 to |S| do
for w = |S| + 1 downto x + 1 do
for z = x + 1 to w − 1 do
for y = z + 1 downto x + 1 do
for x′ = 0 to |S′| do
for w′ = |S′| + 1 downto x′ + 1 do
for z′ = x′ + 1 to w′ − 1 do
for y′ = z′ + 1 downto x′ + 1 do
compute DP (x, y, z, w; x′, y′, z′, w′)

according to Recurrence 1;
end

2. procedure DETERMINE(DP )
begin

min = ∞;
for x = 0 to |S| do
for z = x to |S| do
for x′ = 0 to |S′| do
for z′ = x′ to |S′| do
if DP (x, x+1, z, z+1; x′, x′+1, z′, z′+1)<min

min=DP (x, x+1, z, z+1; x′, x′+1, z′, z′+1);
return min;

end

3. procedure MAIN((S, C), (S′, C′), G)
begin

matrix DP ;
CONSTRUCT(DP, G);
output DETERMINE(DP );

end

4.3 Correctness and complexity of
the algorithm

Theorem 1. For two SA-strings (S,C) and (S′, C ′),
MAIN((S,C), (S′, C ′), G) outputs the edit distance
between (S,C) and (S′, C ′).

It is obvious from the manner of implementation
and Lemma 2 that the time complexity of CON-
STRUCT is O(ξξ′|A |2|S|4|S′|4), and that of DE-
TERMINE is O(|S|2|S′|2). Therefore the time com-
plexity of MAIN is O(ξξ′|A |2|S|4|S′|4).
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