
1

Regular Paper

Evolutionary Algorithm Based on
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Stochastic Schemata Exploiter (SSE), which has been presented by Aizawa et. al., is one of
the evolutionary algorithms based on the stochastic schemata operation. In this paper, the
SSE algorithm is explained firstly and the improved algorithms of the SSE, which is named
as ”Extended SSE”, are introduced. The SSE, the ESSE and the simple genetic algorithms
(SGA) are evaluated and compared by some test problems. The results indicate that some of
the ESSE algorithms have better convergence property than the SSE.

1. Introduction

Most of the combinational optimization prob-
lems have so-called “big valley structure”1).
The evolutionary algorithms are considered
to be effective for such optimization prob-
lems2)∼4). Stochastic Schemata Exploiter
(SSE) is one of the evolutionary algorithms.

The Stochastic Schemata Exploiter (SSE)
has been presented by Aizawa et. al. in
19945). In the traditional simple genetic al-
gorithms (SGA), the better individuals them-
selves survive at the next generation. In the
SSE, the schemata extracted from better indi-
viduals in the population are ranked and the
higher-ranked schemata can survive at the next
generation. In this paper, the SSE algorithm is
explained first evaluated by the solution search
of Rastrigin, Rosenbrock, Griewank, Ridge, and
Schwefel functions6). After that, we present the
extended SSE (ESSE) algorithm which is com-
posed of the original SSE and new ESSE op-
erations. The ESSE and the original SSE are
compared in the Knapsack problem.

2. SSE Algorithm

We will explain the SSE algorithm here5).
At the time step t, the individuals in the

population Pt are ranked in the descending or-
der of their fitness values, which are named as
c1, c2, · · · , cM . The chromosome of the individ-
ual cn is referred as to xn. Considering the
fitness function f(x), the fitness values of the
schemata are ranked in the descending order as

f(x1) > f(x2) > f(x3) > · · · . (1)
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We shall define that the operator Λ(s(H, t))
denotes the highest ranked schema among the
schemata class H at the time t. The highest
ranked schema in the population Pt can be de-
fined as Λ({c1}), which is equal to the chromo-
some x1 of the individual c1. Considering that

f(x1) + f(x2)
2

> f(x2), (2)
the second highest ranked schema is the schema
{c1, c2}, which denotes the common scheme in
the individuals c1 and c2. As a result, the
ranking of the schemata included in the indi-
viduals of the population Pt can be re-defined
that the ranking of the common schemata
{c1}, {c1, c2}, · · · is ranked in descending order
of their average fitness values.

The SSE algorithm is composed of two sub-
processes; the extraction and the ranking of
the better schemata from the individuals of the
population, and the generation of the new indi-
viduals from the extracted schemata.

2.1 Extraction and Ranking of
Schemata

We shall firstly introduce the operator L(S)
and the symbol CL(S). The operator L(S)
means the rank of the sub-population S(�= φ) of
the population Pt. Besides, the symbol CL(S)

denotes the individual of which the rank is
the highest among those of the sub-population
L(S).

The algorithm to extract the first to Mth
highest ranked schemata from the individuals
in the population is summarize as follows.
( 1 ) The list alist of the size M is prepared;

alist={alist(1), alist(2), alist(3),
· · · , alist(M)}.

( 2 ) i← 1 and alist(1)← c1.
( 3 ) At the step i, the sub-populations Si ∨
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Fig. 1 Comparison of SGA and SSE (Rastrigin
function)

Table 1 Average values of final solutions

Function SGA SSE
Rastrigin -2.8947 -2.6624

Rosenbrock -8.4694 -7.7780
Griewank -0.3197 -0.2331

Ridge -111.97 -6.24

Table 2 Best values of final solutions

Function SGA SSE
Rastrigin -0.0594 -0.0396

Rosenbrock -0.1909 -0.7185
Griewank -0.133 -0.0752

Ridge -3.0 -2.0

CL(Si)+1 and (Si−CL(Si))∨CL(Si)+1 are
generated if L(Si) < M .

( 4 ) The new sub-populations and the list
{alist(i), · · · , alist(M)} are re-ranked and
added to the alist.

( 5 ) If i < (M − 1), then i ← i + 1 and the
process goes to the step 3.

2.2 Generation of New Individuals
from Schemata

The individuals of the population Pt+1 at the
next generation t are generated as follows.
( 1 ) The M individuals are generated ran-

domly from the schemata in the list alist.
( 2 ) The mutation operation, which is the

same as that in the SGA, is applied to
the new individuals.

3. Comparison of SGA and SSE

The SGA and SSE are applied to the fol-
lowing problems in order to their search per-
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Fig. 2 Comparison of SGA and SSE (Rosenbrock
function)

-80

-70

-60

-50

-40

-30

-20

-10

 0

 0  200  400  600  800  1000

B
es

t s
ol

ut
io

n 
av

er
ag

e

Generation

SGA SSE

Fig. 3 Comparison of SGA and SSE (Griewank
function)

Table 3 Standard deviation of final solutions

Function SGA SSE
Rastrigin 1.834 2.1621

Rosenbrock 9.1184 2.4296
Griewank 0.1060 0.0912

Ridge 147.57 3.77

formance; solution search of Rastrigin, Rosen-
brock, Griewank, and Ridge functions.

At each problem, 100 runs are performed
from the different initial populations. Figures
1 to 4 illustrate the average fitness of the best
individuals at the runs at the generation. The
abscissa and the ordinate denote the genera-
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Fig. 4 Comparison of SGA and SSE (Ridge function)

tion number and the average fitness value of
the best individuals, respectively. Tables 1, 2,
and 3 shows the average and the best values
and the standard deviation of fitness values of
the final best individuals, respectively.

The comparison of the SSE and SGA solu-
tions indicates the following points;
• The convergence speed of the SSE is higher

than that of the SGA.
• The standard deviations of the SSE solu-

tions are less than or equal to those of the
SGA solutions in all problems, which in-
dicates the SSE solutions depend on the
selection of the initial populations less
strongly than the SGA.

• In comparison of the average values and the
standard deviation of the final solutions,
the SSE solutions are better than the SGA.

4. ESSE Algorithm

The extended SSE (ESSE) algorithm is com-
posed of the original SSE and three kinds of new
operations. The reason why the operations are
added is to improve the diversity of the individ-
uals. The operations are added individually or
complicatedly to the original SSE algorithm.

Consider that the schema A and B are ex-
tracted from the different sub-population S(A)
and S(B), respectively. We would like to in-
troduce the following ESSE operations which
are defined from the relationship between the
schema A and B.

4.1 ESSE operation 1
The operation 1 is performed when the

schema A and B are identical.

Table 4 Definition of ESSE algorithms

Name Ope.1 Ope.2 Ope.3
c1 Yes
c2 Yes Yes
c3 Yes
c4 Yes Yes
c5 Yes
c6 Yes Yes
c7 Yes Yes Yes

SSE

( 1 ) The new sub-population S(C) is gener-
ated from the sub-population S(A) and
S(B) and the schema C is extracted from
S(C)

( 2 ) L(S(A)) is re-calculated from L(S(C)).
The operation 1 deletes the identical

schemata from the list alist to use them more
efficiently than the original SSE and moreover,
the use of the operation 1 enables to estimate
the fitness value of the schemata accurately.

4.2 ESSE operation 2
The operation 2 is performed when the

schema A is included in B.
( 1 ) The new sub-population S(C) is gener-

ated from the sub-population S(A) and
S(B) and the schema C is extracted from
S(C).

( 2 ) If f(A) ≥ f(B), L(S(A)) and L(S(C))
are re-calculated and ranked.

( 3 ) If f(B) ≥ f(A), L(S(B)) and L(S(C))
are re-calculated and ranked.

4.3 ESSE operation 3
The operation 3 is performed when there is

the common schema between the schema A and
B.
( 1 ) The common schema C is extracted from

the schema A and B.
( 2 ) If f(A) ≥ f(B), L(S(A)) and L(S(C))

are re-calculated and ranked.
( 3 ) If f(B) ≥ f(A), L(S(B)) and L(S(C))

are re-calculated and ranked.
4.4 ESSE Algorithms
The ESSE algorithms are defined by adding

three ESSE operations to the original SSE indi-
vidually or complicatedly. So, we can have the
seven ESSE algorithms as shown in Table 4.

5. Comparison of SSE and ESSE

For comparing the SSE and the ESSE, we will
consider the knapsack problem defined as
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Fig. 5 Comparison of SSE and ESSE

max
{xi}

n∑

i=1

cixi xi ∈ 0, 1 (i = 1, · · · , n),

subject to
n∑

i=1

aixi < b,

where the values ai and ci denote the weight
and the price of the knapsack i. The weight
ai is determined by uniform random numbers
from the range 0 ≤ ai ≤ 100. The price ci is
determined by uniform random numbers from
the range 0 ≤ ai ≤ 100. The upper limit of the
load is b = 10000 and the total number of the
knapsacks is n = 400.

Figure 5 illustrates the convergence property
of the best individuals. The abscissa and the
ordinate denote the generation number and the
average values of the best individuals, respec-
tively. The comparison of the final best solu-
tions indicates that the SSE and the ESSE al-
gorithms are better in the order as

c1, c6, c2, c3, c4, c5, SSE, and c7.
In the convergence speed, they are ranked as

c1, c6, c5, SSE, c3, c4, c2, and c7.
We can conclude that the ESSE operation 1 is
the most effective among three operations for
improving the performance of original SSE al-
gorithm.

6. Conclusions

Firstly, the Stochastic Schemata Exploiter
(SSE) was introduce and evaluated by the solu-
tion search of Rastrigin, Rosenbrock, Griewank,
Ridge, and Schwefel functions. As the results,
we could confirm that the convergence speed of

the SSE is faster than that of the SGA.
Next, we described the extended SSE (ESSE)

algorithm which is composed of the original
SSE and three ESSE operations. The ESSE and
the SSE are compared in the Knapsack prob-
lem. The results show that some of a family of
ESSE algorithms are better than the SSE.
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