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Dynamic Load Balancing Technique for Modified PrefixSpan
on a Grid Environment with Distributed Worker Model

MaAkoTO TAKAKI ,t KEIICHI TAMURA ** and HAJIME KITAKAMI!

Motif is a characteristics pattern that is biologically meaningful in an amino acid sequence.
In order to extract the frequent sequence patterns that can become a motif in amino acid
sequences at high speed, we are working on developing the parallel processing of the Mod-
ified PrefixSpan method on a grid environment. The Modified PrefixSpan method has two
characteristics: One is an extreme load imbalance and the other is the inability to estimate
the load of the task. In this study, the distributed worker model is applied to the parallel
processing of the Modified PrefixSpan method on a grid environment. Moreover, we propose
Cache-based Multicast Stealing (CMS), which combines the multicast and Cache-based Ran-
dom Stealing(CRS) technique. The distributed worker model has enough scalability to endure
an increase in the number of PC clusters. CMS can reduce the overhead generated by the
communication delay among the PC clusters.

gions, the Modified PrefixSpan method!’ has been

1. Introducti
nirocuction proposed. The Modified PrefixSpan method is an

In the field of molecular biology, the focus has
been on the extraction of motifs. A motif is as-
sumed to be related to a function of proteins that
have been preserved in the evolutionary process of
an organism. In order to extract a motif, frequent
sequence patterns with variable-length wildcard re-
gions must be extracted from amino acid sequences.

In order to extract the frequent sequence patterns
with fixed-length and variable-length wildcard re-
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algorithm that extends the PrefixSpan method?.
The PrefixSpan method is a tree-projection-based
frequent sequence pattern extraction algorithm.
The algorithm of tree-projection-based frequent se-
quence pattern extraction has high parallelism. We
have been working on developing the parallel pro-
cessing of the Modified PrefixSpan method on a PC
cluster?,

This paper presents the parallel Modified Pre-
fixSpan method on a grid environment. The dis-
tributed worker model®’ is applied to the parallel
processing of the Modified PrefixSpan method on
a grid environment. The distributed worker model
has more scalability to endure the increase in the
number of PC clusters than master-worker mode!
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such as the Hierarchical master-worker model® on
a grid environment.

Moreover, we propose a new dynamic load-
balancing technique, which is called Cache-based
Multicast Stealing (CMS). CMS combines multicast
stealing and Cache-based Random Stealing®. CMS
can distribute the workloads among the PC clus-
ters according to a very large load imbalance and
minimize the communication overhead among the
PC clusters.

We evaluated CMS on an artificial grid environ-
ment with DummyNet. In the performance evalua-
tion, three PC clusters consisting of four PCs each
were used. A dataset that includes motifs called
Kunitz was used. We confirmed that CMS can min-
imize the effect of the communication delay and the
load imbalance among the PC clusters.

The rest of the paper is organized as follows: Sec-
tion 2 explains the Modified PrefixSpan method.
Section 3 is an explanation of the parallel pro-
cessing of the Modified PrefixSpan method on a
grid environment, and Section 4 proposes the new
dynamic load-balancing technique. Section 5 dis-
cusses the related work. Section 6 shows the per-
formance evaluation. Section 7 is the conclusion.

2. Modified PrefixSpan

This section explains the problem definition, the
basic algorithm of the Modified PrefixSpan method
and an example of frequent sequence pattern ex-
traction processing,.

2.1 Problem Definition

Let = {A,C,D,E, F,G H I, K, L M,N,
P,Q R, S, T, V, W, Y } be a set of all letters
in amino acid sequences. Sequence s is denoted as
“@iaz---am", where qj is a letter, i.e., ¢; € I, and
a; = s[j} for 1 < j < m. Sequence database S is
a set of tuples (sid, s.iq), where sid is a sequence
identifier and ssiq is a sequence. Table 1 shows an

example of the amino acid sequences.

Users specify three parameters. The parameters
are the minimum support (min_sup), the maximum
length of wildcard regions (maz_we) and the max-

‘imum number of errors (€mar). A pattern which

satisfies the user specified parameters is extracted
as a frequent sequence pattern.

A k-length sequence pattern is denoted as {pat*)
= (Ar-z(i1, j1)-A2-z(iz, j2)- « -+ -2(ik-1, Jr~1)-Ak).
Symbol “A;" is called a character element. Symbol
“" means that the next element is continued. Rep-
resentation z(in,jn) denotes variable-length wild-
card regions, where 0 < i, < maz_wc and 0 <
Jn = in < Emaxr. A wildcard region indicates an ar-
bitrary letter string. If jn = in, 2(in, jn) means the
fixed-length wildcard regions.

The support of (pat*) in sequence database S is
the number of tuples containing (pat*). If the sup-
port of frequent sequence pattern (pat*} is ent, this
frequent sequence pattern is denoted as “(pat®) :
cnt”. Hereafter, a k-length frequent sequence pat-
tern is called a A-frequent sequence pattern.

For example, if users specify min_sup=3,
maz.wc=3 and €mqar=3, the Modified PrefixSpan
method can extract pattern (F-z(2,5)-A) in se-
quence database S given in Table 1. (F-z(2,35)-A)
includes patterns that are (F-z(2)-A), (F-z(3)-4),
(F-z(4)-A) and (F-z(5)-A). If a wildcard is repre-
sented as “*.” the sequence si includes “F**A." s,
includes “F***A " and s; includes “F*****A ™ The
number of tuples that include pattern (F-z(2,5)-
A) is more than min_sup. Therefore, pattern (F-
(2, 5)-A) is extracted as a frequent sequence pat-
tern.

2.2 Algorithm

The basic algorithm of the Modified PrefixS-
pan method is pattern growth, such as the k-
frequent sequence pattern, into (k+1)-frequent se-
quence patterns. In order to grow a pattern from
(pat¥) into (pat**+!), a projected database is re-
quired. The projected database of {pat*) is denoted
as PDB({pat®)) = {(i,7) | si € S, the next position
of the rightmost character of {pat*) is the value of 7,
where 1 < j <|| s; ||}. Pattern (pat**') can be gen-
erated using PDB({pat*)) by only investigating the
next position of the rightmost character of (pat®).

— 32 —
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To extract the frequent sequence patterns with
variable-length wildcard regions, the Modified Pre-
fixSpan method requires a scope database that
keeps the (k+1)-length candidate patterns in-
cluding wildcard regions between (pat*) and a.
The scope database of (pat®) is denoted as
SDB({pat®), [r,r + emazl) = {(i,we, 8 [fnew]) |
(i,7) € PDB ((pat")),'wc € [7'17' + Emaz]yjnew =
J+wel < j+we L[| s ||,88 € S}, where
r € [0, maz_we].

The algorithm of the Modified PrefixSpan
method is as follows.

(1) First, 1-frequent sequence palterns are ex-
tracted by scanning sequence database S .
Then, PDB({pat')) are generated.

(2) SDB({patk),[r,r + emaz]), where k > 1,
and (k+1)-length candidate patterns are gen-
erated by using PDB((pat*})). SDB({pat*) ,
[r, 7+€maz]) has the position information of
(k+ 1)-length candidate patterns, which is con-
catenated in the variable-lenght wildcard re-
gion, whose length is [r, r + €,naz] and is con-
catenated in an alphabet o to the suffix of
{pat*). SDB which has the position informa-
tion of the (k-+1)-length pattern with & in the
suffix, is denoted as SDB,.

(3) For all candidate (k+1)-length patterns which
are included in SDB,, the support is counted
by using SDB,. If the support of candidate
(k + 1)-length patterns is over min_sup, the
candidate (k+1)-length patterns are the (k+1)-
frequent sequence patterns {pat**!). Then,
for each {pat**1), PDB({pat**'}) is created by
SDB,.

(4) If no PDB({pat**1)) is generated, the Modi-
fied PrefixSpan method terminates the process.

®2 Aa-77F—¥~—-Z (SDB(( F),[2,5)))
Table 2 Scope Database (SDB(( F},[2.5]))
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Otherwise, go to step (2).

2.3 Example

Let our running database be sequence database
S given in Table 1 with min_sup=3, mazr_we=3
and £pmar=3.
quence patterns. First, 1-frequent sequence pat-
terns are extracted by scanning sequence database
S. (A),(F},(K), (L}, and (S) are extracted as 1-
frequent sequence patterns (Figure 1). Let us con-

Figure 1 shows all frequent se-

sider extracting the 2-frequent sequence patterns
from {F) when the number of wildcards is r, where
r=2. Table 2 indicates the scope database ol pat-
tern (F), i.e., SDB({F}, [2,2+3]). Here, let us focus
on SDB4. In Table 2, the patterns that have “A”
in suffix of (F') are in three tuples. The support
count of {F-z(2, 5)-A) is over min_sup(=3). There-
fore, “(F-x(2,5)-A):3" is extracted as a 2-frequent
sequence pattern.

3. Modified PrefixSpan on a Grid En-
vironment

3.1 Distributed Worker Model

In this study, the distributed worker model® is
applied to the parallel processing of the Modified
PrefixSpan method on a grid environment. The
master-worker model” and the distributed worker
model are known as the parallelization model.

In the master-worker model, the master becomes
the bottleneck if the number of PC clusters is in-
creased. However, the distributed worker model
has enough scalability to endure the increase in the
number of PC clusters. In addition, each worker
can communicate with other workers (PC clusters)
directly. Bottlenecks involving specific PC clusters
will rarely occur.

Each PC cluster has a global PC. The global PC
communicates with other global PCs. The PC clus-
ter consists of a global PC and multiple workers. In
the PC cluster, the master-worker structure is con-
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structed. The global PC is the master, and the
other PCs are the workers.

3.2 Small-Grain Task

In the parallel processing of the Modified PrefixS-
pan method, the task is defined as a “small-grain
task.” Figure 2 is an illustration of an example of
a small-grain task. Figure 3 illustrates an exam-
ple of parallel processing of small-grain task. The
characteristics of a small-grain task are as follows.

(1) The small-grain task consists of a k-frequent
sequence pattern and its projected database.

(2) Processing a small-grain task is equal to the
extraction of the (k+1)-frequent sequence pat-
terns from a k-frequent sequence pattern (Fig-
ure 2).

(3) The small-grain task can be processed inde-
pendently in each PC (Figure 3).

(4) Generated (k-+1)-frequent sequence patterns

In addition, (k+1)-
frequent sequence patterns are new small-grain
tasks (Figure 2).

(5) The total number of frequent sequence pat-
terns that will be extracted from a small-grain
task and the total processing time cannot be
estimated beforehand.

Frequent sequence pilttern extraction processing
is parallelized by distributing the small-grain tasks
to each PC like Figure 3. The transfer of the load
is easily because of the characteristics of the small-

are partial solutions.

grain task.
4. Dynamic Load Balancing

4.1 Load Imbalance Problem on a Grid
Environment

It is necessary to solve the very large load imbal-

ance among the PC clusters. The load imbalance
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Fig.3 Parallel Processing of Small-Grain Tasks

among the PCs is very large in the parallel process-
ing of the Modified PrefixSpan method with the
distributed worker model on a PC cluster®. More-
over, the load of the small-grain task cannot be es-
timated beforehand. Therefore, the load imbalance
among the PC clusters is very large in the parallel
processing of the Modified PrefixSpan method on a
grid environment.

In previous study, we proposed a robust dynamic
load-balancing technique called Cache-based Ran-
dom Stealing (CRS)® for the parallel processing
of the Modified PrefixSpan method on a PC clus-
ter. CRS is a dynamic-load balancing technique
that has a cache function with the Random Stealing
(RS) technique. CRS can steal a task by priority
from a PC with an extremely large work load.

However, the following problem exists when CRS
is used on a grid environment. CRS does not con-
sider communication delays among the PC clusters.
CRS causes an increase in the communication over-
head on a grid environment because a global PC
might select other global PCs whose communica-
tion delay is maximal when sending the task request
message.

4,2 Cache-based Multicast Stealing Schema

To address the above-mentioned problem of the
load imbalance on a grid environment, we propose
a dynamic load-balancing technique called CMS.
CMS combines multicast and CRS. CMS can re-
duce the communication overhead more than CRS.
An overview of CMS follows.

In CMS, as a PC cluster becomes idle, the global
PC sends a task request message to all other global
PCs first. The global PC caches the identifier of
the donor PC cluster that sent the small-grain task
to the source global PC earliest to CID. As the PC
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cluster becomes idle again, the global PC looks up
the CID. If the value of CID is valid, the global PC
selects the PC cluster whose identifier is CID as a
donor PC cluster and sends the task request mes-
sage to the donor PC cluster. If the value of CID is
invalid, the global PC sends the task request mes-
sage to all other PC clusters again.

4.3 Procedure of CMS

Detailed procedure of CMS are given below. The

following procedure indicates the process of the
global PC. Each PC has the task pool to store the
small-grain tasks. Figure 4 illustrates the proce-
dure of CMS.

(1) Each global PC has a variable CID with a
default value of -1. Each global PC extracts
the 1-frequent sequence patterns by scanning
the sequence database.

(2) The global PC distributes the small-grain
tasks by using the round-robin technique. The
global PC puts the 1-frequent sequence pat-
terns to the task pool as the small-grain tasks.

(3) The small-grain tasks are executed inside the
PC cluster. If there are no tasks inside the PC
cluster, step (4) is followed.

(4) If CID is equal to -1, step (a) is followed. If
CID 2 1, step (b) is followed.

(a) The global PC sends the task request
message to all other global PC (Figure
4(a)). Step (5) is followed.

{b) The global PC sends the task request
message to the global PC which has CID
as the identifier. Step (5) is followed.

(5) If the multicast was selected in step (4), step
(a) is followed. If the cached ID was selected
in step {4), step (b) is followed.

(a) If the requested global PC received a

small-grain task as the reply of the task
request message, the globai PC caches the
ID of the source global PC that sent the
small-grain task to the requested global PC
earliest to CID. The global PC stores the
received small-grain task to the task pool.
Step (3) is followed. If no task can be re-
ceived from other global PCs, step (6) is
followed.

(b) If the requested global PC received a
small-grain task as the reply of task request
message, the global PC stores the received
small-grain task to the task pool. Step (3)
is followed. If no task was received, the
global PC changes CID to -1. Step (4) is
followed.

(6) The global PC sends the termination signal
to all PC inside the PC cluster and all other
global PC.

CMS can make a certain global PC receives a
task from the global PC whose communication de-
lay is minimal and that has the tasks according to
a change in the communication delay and load im-
balance.

4.4 Example

Let us consider the example of CMS for Figure
4. In Figure 4, the focus is on PC cluster 1.

First, glolia] PC 1 in PC cluster 1 sends the task
request message to all other global PCs (Figure
4(a)) because of CID is equal to -1. Then, all other
global PCs send a small-grain task to the requested
global PC (Figure 4(b)). If global PC 1 receives the
small-grain task from global PC 2 first, global PC
1 caches the identifier of global PC 2 to the CID.
When global PC 1 has no task, global PC 1 sends
the task request message to global PC 2 because
the CID is equal to 2. If global PC 1 receives no
task from global PC 2, global PC 1 changes the
CID to -1.

5. Related Work

The hierarchical master-worker (HMW) model
has been proposed® as a parallelization model on
a grid environment. The HMW model consists of a
sdpcrvisor, the masters and the workers. There are
multiple groups that consist of a master and multi-



ple workers. The supervisor manages the multiple
masters. The HMW model covers the branch and
bound applications. In the HMW model, the speed
of processing is increased by pruning unnecessary
problems and synchronizing the temporary solu-
tion among the PC clusters. Therefore, the HMW
model is suitable to branch and bound applications.

In the HMW model, each master communicates
only with the supervisor. If the distance between
the supervisor and the groups is large, the process-
ing time is increased because of the communication
overhead. The network topology is important prob-
lem in the HMW model.

On the other hand, in the distributed worker
model, each PC cluster can communicate with all
other PC clusters. Each PC cluster can select a
PC cluster whose communication delay is minimal.
The network topology is not a significant problem
in the distributed worker model.

In the Modified PrefixSpan method, the load im-
balance among the PC clusters is extreme. Active
communication among the PC clusters is required.
Thué, the distributed worker model is applied as
the parallelization model in this study.

8. Performance Evaluation

In order to evaluate the effectiveness of CMS,
CRS, Multicast Stealing (MS), Random Stealing
(RS), and Nearest Stealing (NS) are evaluated. In
RS, a global PC selects other global PCs randomly.

In MS, a global PC selects all other global PCs

when there are no tasks inside the PC cluster. In
NS, a global PC select other global PCs based on
the order that a user specified beforehand.

We evaluated CMS, CRS, RS, MS, and NS as
the dynamic load balancing for the Modified Pre-
fixSpan method on a grid environment. Three PC
clusters that consist of four PCs are used. The
DummyNet® was used in order to construet the ar-
tificial grid environment. The DummyNet can gen-
erate the communication delay artificially. Three
PC clusters are connected with the DummyNet.
Each PC was configured with a 2.8GHz Pentium4
processor with 1.0GB memory. The PCs were con-
nected with a 1000 Mbit/sec Ethernet inside the
PC cluster. Fedora Core 2 was used as the operat-

ing system. The socket and the MPI library were
used. The dataset used in this evaluation was pro-
vided by PROSITE®. The dataset that includes
the Kunitz motif has 70 data records (total length:
23,385 bytes).

The communication delay between PC cluster 1
and PC cluster 2 is 100[msec], between PC clus-
ter 2 and PC cluster 3, 200[msec], and between
PC cluster 1 and PC cluster 3, z [msec], where
x € {100,200,---,500}. The parameters are as
follows: min_sup = 35(50%), mazx.wc = 5 and
Smax = 4.

Figure 5 shows the processing time. Figure 6
shows the number of communications, and Figure
7 shows the amount of communication. The hori-
zontal axis is the communication delay between PC
cluster 1 and PC cluster 3. The vertical axis is the
processing time (Figure 5), the number of commu-
nications (Figure 6) and the amount of communi-
cation (Figure 7).

In Figure 5, CMS can keep the processing time
nearly flat. However, NS, RS, and MS cannot keep
the processing time flatly as the communication de-
lay increased. In NS, a global PC can select another
PC cluster with a minimal communication delay.
However, NS cannot select the PC cluster with an
very large load. The number of times that the task
request is missed increases. The same holds true
for RS. Therefore, in NS and RS, the number of
communications and the amount of communication
are increased more than they are in other dynamic
load-balancing techniques. This is shown in Figure
6 and Figure 7. ‘

MS can reduce the number of communications, as
shown in Figure 6. However, the amount of com-
munication is increased in Figure 7. MS sends the
task request message to all PC clusters every time.
Unnecessary communication to the PC cluster that
has no task increases. In CRS, the communication
time is nearly flat. CRS can select a PC cluster
with extreme loads. However, the random nature
increases the number of communications.

In the evaluation with three PC clusters, CMS
can keep the processing time nearly flat. More-
over, CMS can reduce the number of communica-
tions and the amount of communication by reduc-
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ing unnecessary communications more than other
techniques.

7. Conclusions

This paper presents the parallel processing of
the Modified PrefixSpan method on a grid environ-
ment. The distributed worker model is applied to
the paraliel Modified PrefixSpan method on a grid
environment. Moreover, we have proposed CMS.
CMS can address the communication delay and
very large load imbalance among the PC clusters.
In this study, we have evaluated the proposed tech-
nique in an artificial grid environment. In order to
prove the effectiveness of CMS, we plan to evaluate
CMS in an actual grid environment.
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