EEA iR
IPSJ SIG Technical Report

Dres

2006 —MPS—60
200676726

Preliminary Result of
Parallel double Divide and Conquer

Taro Konda!, Hiroaki Tsuboitt, Masami Takata*, Masashi Iwasakift
and Yoshimasa Nakamurat
T Department of Applied Mathematics and Physics,
Graduate School of Informatics,
Kyoto University
Yoshida Honmachi, Sakyo-ku, Kyoto, JAPAN
} SORST, JST

* Graduate School of Humanity and Science,

Nara Women’s University

Abstract This paper shows a concept for paral-
lelization of double Divide and Conquer and its
preliminary result. For singular value decompo-
sition, double Divide and Conquer was recently
proposed. It first computes singular values by a
compact version of Divide and Conquer. The
corresponding singular vectors are then com-
puted by twisted factorization. The speed and
accuracy of double Divide and Conguer are as
well or even better than standard algorithms
such as QR and Divide and Conquer. In addi-
tion, it is expected that double Divide and Con-
quer has great parallelism because each step is
theoretically parallel and heavy communication
8 no required. However, any parallel model of
double Divide and Conquer has not been studied
yet. In this paper, policy of the parallelization is
discussed. Then, a parallel implementation with
MPI is tested on a distributed memory parallel
computer. It successfully shows a high paral-
leliam.

1 Introduction

A new framework of Singular value decomposi-
tion (SVD) was recently developed. It first com-
putes singular values and the corresponding sin-
gular vectors are then computed by twisted fac-
torization. MR3(1, 2, 3] and I-SVD[4, 5, 6] are al-
gorithms in this manner. They achieve successful
speed-up compared to past standard algorithm
such as QR, although further study about numer-
ical accuracy of twisted factorization is desired.
Interest in parallelism of numerical algorithm
is growing due to increased access to parallel com-
puters coupled by the necessity to process growing
data size. The parallelism of these new algorithms

seems to be excellent because each piece of twisted
factorization is parallel executable. However, the
total parallelism is practically limited by seriality
in the section of singular value computation|[7).

A new algorithm, double Divide and
Conquer(dDC)[7, 8], improves the parallelism of
algorithm with the help of twisted factorization.
It adopts Divide and Conquer(D&C) to paral-
lelize the section of singular value computation.
It is as fast and accurate as I-SVD and high par-
allelism is expected for any type of matrix. The
focus of this paper is to evaluate preliminarily a
parallel version of dDC to see a high potential of
parallelism.

2 double Divide and Con-
quer

Here, we introduce double Divide and Con-
quer(dDC) for singular value decomposition. It
first computes singular values by a “compact” Di-
vide and Conquer described in section 3.1. We
here call this compact version Singular Value
oriented Divide and Conguer (SVDC). Then, it
computes the corresponding singular vectors by
twisted factorization described in section 3.2.
dDC has the following features.

1. Speed. Complexity of D&C is ranged from
O(n?) to O(n®) due to the frequency of de-
flations. In contrast, SVDC is dramatically
down-sized and achieves stability because it
skips heavy update of vectors in D&C. Also,
twisted factorization costs O(n?), too. Thus
complexity of dDC is O(n?).

12)

2. Accuracy. Singular values are computed with
high accuracy particularly, because dDC in-
herits good performance of D&C. However,
dDC has a theoretical issue to be discussed.
Although dDC computes singular values in
absolutely high precision, twisted factoriza-
tion assumes that singular values are com-
puted in relatively high precision. It may
cause a problem when matrix has a tiny sin-
gular value. Further investigation should be
taken.

3. Parallelism. Both SVDC and twisted factor-
ization have essentially good parallelism.

4. Memory space. D&C requires O(n?) memory
space to hold SVD of submatrices temporar-
ily. In contrast, dDC needs O(n) memory
space because of a few vectors to be at hand.
Therefore, we can use dDC to solve various
problems with huge matrix.

5. Partial computation of singular values and
singular vectors. Twisted factorization com-
putes selected vectors according to need be-
cause the computations are independent each
other. However, mdLVs of I-SVD has to fin-
ish the computation of all singular values to
find the targeted values. In contrast, SVDC
of dDC can specially compute the targets,
selecting secular equation to be solved.

2.1 Divide and Conquer to Com-
pute Singular Values

Given an n X (n + 1) upper bidiagonal matrix

by b
B= by . ()
) b2n—2
b2n—l b2n
its SVD is
B=U(Z 0)VT7, (2)

where U is an n x n orthogonal matrix whose
columns are left singular vectors. V is an (n +
1) x (n+1) orthogonal matrix whose columns are
right singular vectors. ¥ is an n x n nonnegative
definite diagonal matrix and 0 is a column of zero
elements.

The n x (n + 1) upper bidiagonal matrix B is
partitioned into two submatrices as

By 0
B=| ba-rexT buerT (3)
0 B,

for a fixed & such that 1 < k < n, where B;
is a (k — 1) x k lower bidiagonal matrix, B; is an
(n—k)x (n—k+1) upper bidiagonal matrix and e;
is the j—th unit vector of appropriate dimension.
The parameter k is usually taken to be |n/2].
Now, suppose that SVD of the B; is given by

B; =U;(D; 0) (Vi vi)T . (4)

Let 1; be the last row of V1, 3 be the last element
of vy, f3 be the first row of V5 and ¢s be the first
element of vo. By substituting (4) into (3), we
then obtain

0 Uy 0\ /[bak1%1 bor—1ly by bardz
B=|1 0 0 0 D, 0 0
0 0 U 0 0 Dy 0
T
Vi V; 0 0
x(nvo w) . (5)

If Givens rotation is applied to make byx2 zero,
then we get

T

B=U(M 0)(V %), (6)
where
~ 0oU; O
U = 1 0 0 |},
0 0 U,
M =

Q 0 Dy
f,E(Co‘ﬁVl 0)

ro bogali bufa
0 D o |,

<
il

SoV2 0 Vz

—8oV1
cove /'

ro = (bak—-19%1)? + (bor2)?,
o = b"’;—o"/}', 80=%- (7

Thus the matrix B is reduced to (M 0) by

the orthogonal transformations J-and (V¥).

The above D&C process can be simplified when
only singular values are desired. From (6) and (7),
B is written as

B =0(Mo)V +)
= UWusVE 0)(V %)
= Us(vvy v) (8)
_ vy Vi 0 —sovi)\
- om((n S w)w ()

thus

-,
1

(cor 1 0)Va,
(so¥2 0 I3)V,
—sod, Y= con, (9)

° o~
Il

Figure 1: Parallel model with less communication
(P =4).

where f) is the first row of V), ¢, is the first ele-
ment of vy, 1, is the last row of V5, 95 is the last
element of v, 1 is the last row of V, 1 is the last
element of v, f is the first row of V and ¢ is the
first element of v.

Because most of the running time of D&C is
consumed for vector update during singular vec-
tor computation, SVDC is wholly faster than the
normal one.

3 Preliminary result of Par-
allel double Divide and
Conquer

Figure 1 is a pictorial model of SVDC executed by
4 processors. It is the tree built by the dividing
process. A leaf of the tree represents a subma-
trix. A node is a merge process of D&C. A num-
ber on leaves or nodes shows processor number to
address the process, which is computing SVD of
submatrix at leaves and merge of submatrices at
nodes. A line is process transition. In particular,
an arrowed line between boxes (leaves and nodes)
means communication between processors.

First, submatrices at the lowest level (repre-
sented as leaves of the tree) are evenly assigned
to all processors in order. Second, each processor
computes SVDs of assigned submatrix indepen-
dently. Then the merge processes are begun at
each processor. For each depth of the tree from
the bottom, the submatrices are merged in order.
The process is paused when the depth becomes
more than P, the number of processors. It is
time to start communication. We call a processor
which is a left son of the parent Slave and a son
Master. A slave sends data Ty, f, 1, ¢, ¥, to be
needed for parent’s merge process to master and
finishes tasks at SVDC process. A master receives
the data and merge two submatrices. This pro-

Table 1: Speciﬁcaﬁoh of test bed.
Appro HyperBlade
PC Cluster
CPU AMD Opteron 1.6GHz
(SMP with 2CPUs x 8)

Network Gigabit Ethernet
0S SuSE Linux 8.0
(kernel) (Linux 2.4.19-SMP)
Compiler pef77 5.1-3
(Option) -03
BLAS Optimized by ATLAS

cess is proceeded until the root node is computed.
When it is over, the computed singular values are
broadcasted to every processor to compute singu-
lar vectors parallel. Finally, twisted factorization
is invoked parallel. Vectors to be computed are
assigned to every processor evenly in order, and
these results are gather to one processor.

This parallel model is a straightforward ap-
proach. Although it calls a few communication to
order, practical efficiency is not high. After the
communication is begun, the number of idle pro-
cessors is increased step by step. What is worse,
the tree is top-heavy, merge process costs more at
upper level. Parallelization of each merge makes
improvement. The detail will be discussed in fu-
ture papers.

3.1 Numerical experiments

In this section, we evaluate the parallel dDC with
respect to parallelism. We compare it with the
following two algorithms on a bidiagonal SVD.

o Parallel I-SVD: I-SVD algorithm whose dis-
cretized interval of mdLVs is 6 = 1.0.
Inverse Iteration updates computed vectors.
Twisted factorization and Inverse Iteration is
parallel.

¢ QR: QR algorithm with shifts (PDBDSQR in
ScaLAPACK([9)).

Here, dDC uses QR to solve submatrices and in-
verse iteration to update computed vectors.

Table 1 shows specification of test beds. We
compute SVD of a bidiagonal matrix whose diag-
onal elements are 2.001 and subdiagonal elements
are 2.0. All singular values are separated to each
other. The deflation of D&C and dDC seldom
occurs.

The parallel dDC is implemented with
MPI[10]. The number of processors is ranged
from 1 to 16. Table 2 shows the best times of 10
executions of parallel dDC. Dimensions of the ma-
trices are n = 3,000, n = 5,000 and n = 7,000.

Table 2: Timing of Parallel dDC.

The number of processors

1 2 4 8 16

n=3,000 | 5.78 |2.93 | 1.50 | 0.79 | 0.48

n=5,000 |18.17 |9.38 | 4.76 | 2.83 | 1.66
in second: |s]

Table 3: Comparison of parallel dDC to parallel
I-SVD and QR (n = 3,000).
The number of processors

1 |2@xn |4ax2 [Biaxa |16@xa)

dDC 578 | 293| 150 | 0.79 0.48

I-SVD| 553 | 344 | 236 | 1.80 1.52

QR |867.98 | 433.61 |173.44 | 66.78 | 34.71
in second: s}

In the case of n = 7,000, parallel dDC acquires
0.84 of parallel efficiency and speed—up is 13.47 by
16 processors. For the smaller case, it also shows
good performance. We can say that parallel dDC
has high scalability in this case.

Then, parallel dDC is compared to parallel
versions of I-SVD and QR. Table 3 shows the
best times of 10 executions. The dimension is
n = 3,000. Parallel dDC is more than tree times
faster than Parallel I-SVD by 16 processors. It is
much faster than Parallel QR, although it shows
super linear efficiency due to good use of cache
memory. Figure 2 illustrates the execution times
of parallel dDC and parallel I-SVD.

4 Conclusions

A new framework of SVD was recently proposed
that computes singular values first, then the cor-
responding vectors are computed by twisted fac-
torization later. double Divide and Conquer
{dDC) is one of the algorithms built on this frame-
work. The speed and accuracy of dDC are as well
or even better than standard algorithms such as
QR and normal Divide and Conquer. In addition,
it is expected that dDC has great parallelism be-
cause each step is theoretically parallel and heavy
communication is not required. This paper shows
a basic idea to parallelize dDC and its parallel
implementation with MPI is tested on distributed
memory parallel computer. It shows high scala-
bility and much faster than parallel I-SVD and
QR on a matrix. As a future work, study on
an affinity of precision between the part of singu-
lar computation in dDC and twisted factorization
should be proceed. Moreover, comprehensive test
on practical and huge applications will be taken.

w > Parallel dDC =——t—
E o
§ 3 .
3 H
¢ 21 s .
w
1 -
0 1

0 2 4 6 8 10 12 14 16
The number of pracessors

Figure 2: Execution times of parallel dDC and
parallel I-SVD.

References

[1] I. Dhillon and B. Parlett. Orthogonal eigenvec-
tors and relative gaps. SIAM J. Matriz Anal.
Appl., 25(3):858-899, 2004.

[2] K. Fernando. On computing an eigenvector of a
tridiagonal matrix. part 1: basic results. SIAM
J. Matriz. Anal. Appl., 18(4):1013-1034, 1997.

[3] B. Parlett and L. Dhillon. Fernando’s solution
to wilkinson'’s problem: An application of double
factorization. Lin. Alg. Appl., 267:247-279, 1997.

[4] M. Iwasaki, S. Sakano, and Y. Nakamura. Accu-
rate twisted factorization of real symmetric tridi-
agonal matrices and its application to singular
value decomposition. Trans. Japan. Soc. Indust.
Appl. Math., 15(3):461-481, 2005. (in Japanese).

[5) M. Takata, M. Iwasaki, K. Kimura, and Y. Naka-
mura. An evaluation of singular value compu-
tation by the discrete lotka-volterra system. In
Proc. International Conf. on Parallel and Dis-
tributed Processing Techniques and Applications,
volume 2, pages 410-416, 2005. Las Vegas, USA.

[6] M. Iwasaki and Y. Nakamura. Accurate compu-
tation of singular values in terms of the shifted
integrable scheme. preprint, 2005.

T. Konda, M. Takata, M. Iwasaki, and Y. Naka-
mura. A new singular value decomposition algo-
rithm suited to parallelization and preliminary
results. Proceedings of the IASTED Interna-
tional Conference on Advances in Computer Sci-
ence and Technology, pages 79-84, 2006.
T. Konda, M. Takata, M. Iwasaki, and Y. Naka-
mura. A new svd algorithm by divide and
conquer and twisted factorizations. IPSJ Sym-
posium Series, 2006(1):105-112, 2006. (in
Japanese).

[9] L. Blackford, J. Choi, and A. Cleary et al.

ScaLAPACK Users’ Guide. SIAM, 1997.

[10] W. Gropp, E. Lusk, and A. Skjellum. Using MPI
Second Edition. The MIT Press, 1999.

7

8

—_

