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Abstract This paper focuses on a new ex-
tension version of double Divide and Con-
quer (dDC) algorithm to eigen decomposi-
tion. Recently, dDC was proposed for sin-
gular value decomposition (SVD) of rect-
angular matriz. The dDC for SVD con-
sists of two parts. One is Divide and Con-
quer (DEC) for singular value and the other
is twisted factorization for singular vector.
The memory usaege of dDC is smaller than
that of D&C. Both theoretical and running
time are also shorter than those of D&C. In
this paper, a new dDC for eigen decompo-
sition is proposed. A shift of origin is in-
troduced tnto our dDC. By some numerical
tests, dDC is evaluated with respect to run-
ning time end accuracy.
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1 Introduction

Any n x n symmetric matrix is transformed
into a symmetric tridiagonal matrix by using
a sequence of Householder transformations [2].
This preconditioning process help us to shorten
execution time drastically. Eigen decomposi-
tion algorithms of symmetric tridiagonal ma-
trices are also important. Divide and Con-
quer(D&C) (1, 6] is one of the standard algo-
rithms for symmetric tridiagonal eigen decom-
position. D&C requires O(n?) memory capac-
ity, and then large scale eigen decomposition
may fail by lack of memory. Theoretical time
in D&C depends on frequency of deflation and
is between O(n?) and O(n?).

In 2006, double Divide and Conquer (dDC)
[7] for singular value decomposition (SVD) has

been proposed. In dDC, singular values and
singular vectors are computed by using a part
of D&C and twisted factorization, respectively.
In this paper, we design a new eigen decompo-
sition algorithm which is an extension of dDC
for SVD. The memory usage and the theoreti-
cal time are O(n) and O(n?), respectively. Our
dDC is also parallelizable easily.

In section 2, we design a new dDC for eigen
decomposition. By some numerical tests in sec-
tion 3, we discuss dDC with respect to theoret-
ical time and accuracy in section 4.

2 double Divide and Conquer

We first adopt a part of D&C and twisted fac-
torization for computing eigenvalues and eigen-
vectors of positive-definite T. In this paper,
twisted factorization is done with the help of
the dstqds and dqds transformations [5]. These
qd-type transformations for positive-definite
matrix have robustness [3]. It is of significance
to note that T = T — sI with shift s has the
same eigenvectors of T'. Namely, we may com-
pute the eigenvectors of positive-definite T in-
stead of nonpositive-definite 7. By combining
simplified D&C, twisted factorization and shift
of origin, we design a new dDC for eigen de-
composition.

Standard D&C is an algorithm for not only
eigenvalues but also eigenvectors. It is known
that D&C algorithm can be simplified if only
eigenvalues are desired [6]. Let T € R™*" be
divided as

T= (1(;1 T )“’ﬁ (9-1 )("“T 07le]),

Ty € RM*™ ¢ = (0,--- ,0, l)T € R™,
T €R™*™ e, =(1,0,---,0)" € R™



where @ is nonzero constant and 8 corresponds
to an (n1,n1+1)-element of T'. Let T, k = 1,2
be decomposed as T = QkaQZ, where Qj
are eigenvector matrices and Dy are diagonal
matrices. with eigenvalues of 7). Simplified
D&C is different from the standard version that
a large part of Q. are not necessary for eigen-
values of original matrix 7. Simplified D&C
requires only the first row gy of Q2 and the
last row q; of 1. We can obtain eigenvalues
of T' by computing the roots A of the secular
equation

1+ 800+ 602" (D12 - M)z =0,

oun (5 8)-+= il
12 = 0 D2 1o = 1+0_2 9—lq}l' .
Moreover the first row gr,;s or the last row
qr; of eigenvector matrix of T' are necessary
for eigenvalues of original matrix if T is not
original. Let @ be the eigenvector matrix of
D12+ B(6 + 6~1)zz". Then gr,s and gy are
given as ,
ar;s = Qiz5Q, 911 = Q124Q

in terms of the first row g2,y and the last row
q12y of Q12 = diag{Q1,Q2}, respectively. Ob-
viously, theoretical time decreases in compari-
son with standard D&C which computes both
eigenvalues and eigenvectors. Simplified D&C
runs for O(n?) time. Especially, if z includes a
zero-element or any elements of D;3 are mutu-
ally equal, theoretical time of simplified D&C
is shortened by deflation.

If eigenvalues are given, twisted factorization
is a useful algorithm for computing eigenvec-
tors. Let T' be a symmetric tridiagonal matrix
with (k, k)-element ay, (k, k+1)-element by and
an eigenvalue \. Of course, (k+1, k)-element of
T is by. Then a corresponding eigenvector » to
) satisfies (T — AI)v = 0. Generally, we obtain
an approximate eigenvalue X with some error
by numerical algorithms. To compute a higher
accurate eigenvector from A, we had better find
D such that

(T =AYb = e, (1)

where -y, is a residual parameter and e, is an
identity vector with g-th element 1. The vec-
tor 9 in Eq.(1) with -, # 0 approaches to the
correct eigenvector v. Moreover, a twisted fac-

torization of T — AJ

T - AI = N,D,N] (2
1 0
h 1 \
N, = o1 1 up ,
1
T gy
\0 1)

D, = diag(df,--- ,d;.p’)’g,d;us”' vz ),
To=df +d; +3-a,

through LDL and UDU decompositions of T' —
Al. By substituting Eq.(2) for Eq.(1), we have

NoDoNJ % =158, @)

Since it is obvious that Dye, = 7€, and
Nye, = e,, Eq.(3) is transformed to

N]o=e,. (4)

By choosing a twist index ¢ such that
7ol = ming |yx|, computed ¥ in Eq.(4) be-
comes a good approximation of the correct
eigenvector v. The element #(k) of » =
(®(1), 5(2), --- , 9(n))" is sequentially com-
puted by 9(k) = 1 (if &k = p) or =lpd(k +
1) (fo-12k>1)or —up_19(k—1) (ifo+
1<k <n) Ifd;=00rd,:0 = 0 for
some kg, then #(kg) is exceptionally given as
(ko) = brgr10(ko + 2)/by, (if ko < o) or
brg—20(ko = 2)/brg~1 (if ko > p). It is shown in
[4] that theoretical time of twisted factorization
is O(n?).

By combining O(n)-shift with simplified
D&C and twisted factorization, our dDC takes

O(n?) time for eigen decomposition of original
T.

3 Numerical tests

In this section, we compare the following algo-
rithms by some numerical tests.

e D&C: Divide and Conquer
(DSTEDC in LAPACK|8])

¢ dDC: double Divide and Conquer

e dDC+I: double Divide and Conquer with
an inverse iteration
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Figure 1: A graph of the Type 1 matrix size
(z-axis) and the running time (sec) for eigen
decomposition (y-axis)
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Figure 2: A graph of the Type 2 matrix size
(z-axis) and the running time (sec) for eigen
decomposition (y-axis)

Let us introduce two kinds of test matrices with
symmetric tridiagonal form. Diagonal and sub-
diagonal elements of Type 1 are given ran-
domly. Type 2 matrix with random eigenval-
ues is constructed by using Lanczos method [2].
We prepare 50 and 10 different test matrices
for Type 1 and Type 2, respectively. Numeri-
cal tests were carried out by our computer with
CPU:Intel Pentium 4 2.66GHz, Memory:1GB,
Compiler:GNU g77 ver.3.4.5 (option:-03) and
OS:Linux ver.2.4.27-2-386.

Figure 1 and 2 show the averaged running
time for computing eigen decompositions of
Type 1 and Type 2 matrices, respectively. Ac-
cording to Figure 1 and 2, dDC runs the fastest
for eigen decomposition of both Type 1 and
Type 2. Obviously, running time of dDC+I in-
creases by adding an inverse iteration to dDC.
The eigen decomposition of Type 1 is computed
with great shorter than that of Type 2 if we use
D&C. The eigen decomposition of Type 1 is ac-
celerated by some deflations [1]. Hardly any de-
flations happen in the case of Type 2. Namely,
running time of D&C is extremely variable.

Let D denote a diagonal matrix with an
approximate eigenvalues M of T. Let Q =
{Qih<i <n be an approximate eigenvector
matrix to the correct matrix Q = {Q; ;}1<i j<n-
Then we introduce the following criteria for ac-
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Figure 3: A graph of the Type 1 matrix size
(z-axis) and the relative gap ¢; (y-axis)
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Figure 4: A graph of the Type 2 matrix size
{z-axis) and the relative gap ¢; (y-axis)
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where {Ax}x=12,.,» are the correct eigenvalues
of T and || ||co denotes the infinity norm. Fig-
ure 3 and 4 describe the relative gap c; between
the original matrix T and computed eigen de-
composition 7'~ QDJT. Figure 5 and 6 illus-
trate the orthogona.hty c2 of computed eigen-
vector matrix Q. Espe(:lally, for Type 2 ma-
trix, the relative gap of A and the absolute
gap of Q are shown in Figure 7 and 8, respec-
tively. Figure 3 and 4 suggest that dDC+1I and
D&C should be applied to the eigen decompo-
sition of Type 1 and Type 2, respectively, if
the relative gap c; is desired to be small. It
is emphasized here that Q is given by product
of several orthogonal matrices if we use D&C.
While every eigenvector is separately computed
by twisted factorization of dDC and dDC+1
As shown in Figure 5 and 6, Q with the high-
est orthogonality is accordingly computed by
using D&C. Moreover, we see from Figure 7
that Ap are computed with the almost same
accuracy if we use either D&C or dDC. Ob-
viously, computed A; by dDC+I are equal to
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Figure 5: A graph of the Type 1 matrix size
(z-axis) and the orthogonality c2 of computed
eigenvector matrix (y-axis)
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Figure 6: A graph of the Type 2 matrix size
(z-axis) and the orthogonality ¢z of computed
eigenvector matrix (y-axis)

that by dDC. This is because D&C, dDC and
dDC+1 adopt the same algorithm for eigenval-
ues. In Figure 8, computed @ by dDC+I has
smaller gaps ¢4 than that by dDC. Compared
with dDC, computed eigenvectors approach to
the correct vectors by adding an inverse iter-
ation. Figure 6 and 8 also implies that the
orthogonality ¢, of computed eigenvector ma-
trix does not have much concern with the gap
¢4 from the correct eigenvector matrix.

4 Conclusion

In this paper, we proposed double Divide and
Congquer (dDC) algorithm for eigen decompo-
sition of symmetric tridiagonal matrix. Our
new eigen decomposition algorithm is designed
based on dDC for SVD. By some numerical
tests, it is shown that dDC is as fast as or
even faster than D&C for eigen decomposi-
tion. Though computed eigenvector matrix @
by dDC or dDC+I is with less orthogonality
than that by D&C, @ is with smaller gap from
the correct matrix. The eigenvector also ap-
proaches to more accurate vector if we use only
an inverse iteration. As a future work, we will
design a parallel version of dDC.
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Figure 7: A graph of the Type 2 matrix size
(z-axis) and the relative gap c3 of computed
eigenvalues (y-axis)
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Figure 8: A graph of the Type 2 matrix size
(w-axis) and the absolute gap c4 of computed
eigenvector matrix (y-axis)
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