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Abstract

In this paper, we propose two algorithms to generate matrices with desired singular values
and singular vectors. The first algorithm is based on the Golub-Kahan-Lanczos method.
This requires O(m?) computational cost, where m is dimension. The second algorithm
uses the Jacobi rotation and the bulge-chasing. If matrices with desired singular values are
needed, the computational cost is O(m?). If matrices with not only desired singular values
but also desired singular vectors are needed, the computational cost becomes O(m?®).
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1 Introduction 2 Existing Algorithms for Gen-

When accuracy of Singular Value Decomposition eratlng Test Matrices

(SVD) schemes is evaluated, accuracy of singular vec- . ol ) )
tors has been discussed with respect to the orthog- To evaluate numerica routlnes,. both executlc.)n
onality in general. However, the orthogonality does time and accuracy are needed. It is easy to obtain
o s . execution time. On the other hand, accuracy should
not indicate errors between a computed singular vec- ] ) ] . .
tors and the exact singular vectors. Thereupon, test be measured by using matrices with desired singular
. . . . . values and singular vectors. There are three existing
matrices with desired singular values and singular

vectors should be used. Though, algorithms for gen-
erating test matrices are important, such suitable al-
gorithm have not been found. In this paper, we dis-
cuss new algorithms for the above purpose.

In §2, we discuss three existence algorithms to eval-
uate accuracy of numerical scheme computing SVD.
In §3 and 4, we propose two algorithms generating
accurate test matrices having desired singular values
and singular vectors. In §5, we compare performances

of two our algorithms.

algorithm for generating bidiagonal test matrices.

In the first algorithm,double-precision type code is
transformed into multiple-precision arithmetic one,
to obtain more accurate singular values and singu-
lar vectors of a test matrix. And, desired singular

values and singular vectors are not used.

The second algorithm is designed by application of
the Cholesky decomposition to a known benchmark
symmetric positive definite tridiagonal matrices for

eigen decomposition. Bench mark matrices are few.
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As the third algorithm, in few matrices, exact sin-
gular values and singular vectors are expressed as
trigonometric [2]. By using this algorithm, matri-
ces, whose singular values and singular vectors are
know with high accuracy, can be generated in any ma-
trix dimension. However, such matrices have special
properties, for example, it has uniformly distributed
singular values. Hence, accuracy in schemes can not

be generally discussed through experimental results.

3 Algorithm designed from

the Golub-Kahan-Lanczos
method

Let A be an mXxm full matrix whose singular values
are nonzero and simple (not multiplicate). Let P and
@ denote orthogonal matrices such that PT AQ = B,
where P = (p1,P2,"**,Pm), @ = (41,92, **,Am),
and B is an upper bidiagonal matrix. It is known that
the P, @ and B are computed by using the Golub-
Kahan-Lanczos method [1]. We obtain ATAQ =
ATPB = QBT B, which implies that @ transforms
AT A to BT B, where the singular values of B are
congruent with those of A.

Let us consider the case where A is a just diagonal
matrix ¥ = %7 where A= ¥ = X7. Then ¥ consists
of singular values of B because of PTXQ = B. Let
us set a vector qp such that |q;| =1 and an m x m
diagonal matrix ¥. Then @, P and B are given as
£Q =PB,XTP=QBT,

bai—1 (1 < i <m) and p; are determined by Xq; —
ba(i-1)Pi—1 = bag—1p; with |pi| = 1, and by; and gi 44
are decided by £7p; — bo;_yqi = bagpira with |qi} =
1. Let P=U and @ =V, then

by = ||Zvi], ug=Zvi/by,
{ bor, = llanl, Vht1 = an/ban, )

bant1 = ||Bull, uni1 = Bu/bon+1,

.
ap =% up —bap_1Vn,
Br = Xvny1 — bopup,

(h:1<h<m-1).

Hence, in the case where a vector v; such that
|[vi] = 1 and an m x m diagonal matrix ¥ are

given, V, U, and B can be obtained. This algorithm

in double-precision is not always suitable because
this algorithm is based on Krylov subspace method.
Therefore, a multiple-precision arithmetic library is
needed. For the number of necessary precision, we
will discuss in §5.

In this algorithm, to obtain a bidiagonal matrix
with desired singular values, the computational cost
is O(m?). To generate a bidiagonal matrix with de-
sired singular values and singular vectors, it takes also

o(m?).

4 Algorithm designed from the
Jacobi and the
bulge-chasing

rotations

In this section, we propose an algorithm which
transforms a diagonal matrix into bidiagonal matrix
with the help of the Jacobi rotations and the bulge-
chasing.

Let 3y be an mxm diagonal matrix whose elements
are singular values ;.

The Jacobi rotation

1
Jo = 1 (2)
cosfy sinép

—sinfy cosfy

is adopted as £y = Z¢.Jp, where 6 is randomly given.
Let Ly be set to

sin ¢g

cos ¢p

cos ¢o

— sin ¢g

with ¢g such that the (m,m — 1)** element of Lg%
becomes 0. Concretely, we haveX); = LoSo.
Next, another Jacobi rotation Jy

1

J1= cosfly  sinfy , (4)

—sginf; cosb,



is adopted as o= 31Jy, where 67 is randomly gen-
erated. Then, let L; be set to

1

) (5)

sin ¢

COos ¢

Cos ¢
—sin ¢1
1

where ¢ is a suitable value to change the (m—1,m~—
2)”” element to 0 in Ly fh. Concretely, the left Given
rotation L; is adopted as fh =LY, Let R, be set
to

cos ¥y sinyy | (6)

—sinn CoSs 11

where 1 is a suitable value to change the (m—2, m)t"
element to 0 in ‘ZlRl. Then, the right Given rotation
R, is adopted as £; = 531 R;. I~/0 is given as follows:

i (7)
sin éo

— sin d;o cos q7)0

cos ¢y

where ¢ is defined to change the (m, m—1)t" element
to 0 in LoE;. Then,

v

Y = LoEi = LoL1LyXoJoJi Ry
dy
= dm_g Em—2 (8)
Am—1  €em—1

And, the left orthogonal matrix U and the right one V'
in 3, are given as U = LoL Lo and V = (JoL1R))T.

By repeating this process, a bidiagonal matrix B
and exact singular vectors can be generated.

The computational cost is only in O(m?) for gen-
erating a bidiagonal matrix B if U and V are not
necessary. On the other hand, the computation cost
is in O(m?®) for generating a bidiagonal matrix B,

singular vectors U and V.

# 1: The max necessary bit number for generating

bidiagonal matrix with only desired singular values.

[bit]
matrix dimension | Algorithmg | Algorithmy
100 512 128
200,...,400 1024 128
500,...,900 2048 128
1000 4096 128

5 Evaluations

‘We discuss a necessary bit number and execution
time. Here, the necessary bit number means the min-
imal bit number for generating the same matrices
by using larger bit number. For some experiments,
we use a computer with 2 CPUs: AMD OPTERON
285 (Dual Core) and GCC 4.1.1. Algorithmg and
Algorithmj are program codes based on our algo-

rithms proposed in §3 and 4, respectively.

5.1 Bidiagonal matrices

To validate necessary bit numbers, 100 test ma-
trices are generated at each dimension. In our ex-
periments, necessary bit numbers increase twice and
twice. Tab.l shows the max necessary bit number
for a generation with only exact singular values. By
using Algorithm;, the necessary bit number is al-
ways 128 bits, regardless of matrix dimension. On the
other hand, in Algorithmg, the necessary bit number
increases as matrix dimension be longer.

From the transition of average execution time for
generating bidiagonal matrices with only desired sin-
gular values by using Algorithmy, we confirm that
the execution time is O(m?). Fig.l shows transi-
tion of average execution time in Algorithmj; and
Algorithme. The execution time in Algorithme is
longer than that in Algorithm;. Since the neces-
sary bit number is changed, execution time increases
above O(m?) in m = 100, 200, 500 and 1000.

It is concluded that the necessary bit number
in Algorithmj is smaller than that in Algorithmg
and the execution time of Algorithm; is O(m?).
Algorithmy should be employed in the case where

we evaluate accuracy of singular values and orthogo-
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1: Transition of average execution time for gener-
ating bidiagonal matrices with desired singular val-

ues.

& 2: The max number of necessary bit for generating
of a bidiagonal matrix with desired singular values

and vectors. [bit]

matrix dimension | Algorithmg | Algorithmy
100 2048 512
200 2048 1024
300 4096 1024
400, 500 4096 2048
600,...,1000 8192 2048

nality of singular vectors computed by SVD routines.

5.2 Exact singular vectors

To investigate necessary bit numbers, 3 test ma-
trices are generated at each dimension. Tab.2 shows
the max number of necessary bit for generating with
not only desired singular values and but also desired
singular vectors. In Algorithmg and Algorithm;,
the necessary bit number increases as matrix dimen-
sion becomes large. The necessary bit number in
Algorithmg is longer than that in Algorithm ;.

Tab.2 shows the transition of computational cost
for generating a bidiagonal matrix with desired sin-
gular values and vectors. When the number of bit
increases at twice, the computational cost becomes
three times. The transition in Algorithmy is more
furious than that in Algorithmg, since the com-
putational cost in Algorithmeg and Algorithm; are
O(m?) and O(m?), respectively.

Consequently, to generate a bidiagonal test matrix
with desired singular values and vectors, Algorithmg

is better if memory size is sufficient level.

3 3: The computational cost for generating with de-

sired singular values and vectors. [sec.]

matrix Algorithmg Algorithm

dimension Max.  Min. Max. Min
100 0.26 0.04 1.28 0.54
200 0.98 0.35 29.99 9.98
300 6.78 2.21 100.91 99.80
400 12.08 3.93 715.84 236.33
500 18.81 18.89 1400.07 461.18
600 87.76  27.07 | 2440.43 798.41
700 | 119.56  37.00 3892.49 1272.62
800 | 156.10 48.47 | 5808.66  5726.86
900 | 197.35 61.533 | 8184.76  8180.16
1000 | 243.20 76.63 | 11346.89 11233.88

6 Conclusion

In this paper, we propose new algorithms for gener-
ating bidiagonal test matrices, which is useful for val-
idating SVD routines. By using existing algorithms
in §2, we can not obtain a number of bidiagonal ma-
trices whose singular values and singular vectors are
known. On the other hand, our new algorithms in §3
and 4 can generate bidiagonal matrices with desired
singular values and vectors in a random.

When a bidiagonal matrix with only desired singu-
lar values are generated, the computational costs in
Algorithmg and Algorithmy are both O(m?). Also,
the necessary bit number in Algorithm, is shorter
than that in Algorithmg. From viewpoint of neces-
sary bit number, Algorithm; is better. To generate
a bidiagonal matrix with not only desired singular
values but also desired singular vectors, Algorithmg
and Algorithm; require O(m?) and O(m?) execu-
tion time, respectively. Algorithme runs faster than
Algorithm.
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