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Abstract. The traveling tournament problem is a well known benchmark problem in sports scheduling,
This problem has both an optimization aspect like the traveling salesman problem and a feasibility aspect
as in many scheduling/timetabling problems. Since the traveling tournament problem was established, a
number of researchers have tackled the problem with various optimization techniques. Recent researches
indicated that simulated annealing algorithms are effective for the traveling tournament problem, and
few results by tabu search are reported so far. In this manuscript, we propose a tabu search algorithm for
the traveling tournament problem. Our computational experiments show that the proposed algorithm
generates good solutions, which are competitive with solutions by simulated annealing algorithms.

1 Introduction In this paper, we propose a tabu search algo-
rithm for the traveling tournament problem. Our
computational experiments show that the pro-

posed algorithm produces solutions competitive

The traveling tournament problem is a famous
benchmark problem in sports scheduling, a recent

topic in combinatorial optimization. This prob-
lem has not only an optimization aspect like the
traveling salesman problem but also a feasibility
aspect as in many scheduling/timetabling prob-
lems. These aspects make the traveling tourna-
ment problem much difficult. For instance, there
is an unsolved instance of the traveling tourna-
ment problem of 10 cities, whereas 1,000 cities
instances of the traveling salesman problem can
be easily solved nowadays.

Since the traveling tournament problem was
established in 2001 [3], a number of researchers
have tackled the problem with various optimiza-
tion techniques, such as integer programming,
constraint programming and several metaheuris-
tics. In particular, simulated annealing algo-
rithms are known to be effective for the traveling
tournament problem [1, 7, 9]. On the contrary,
there have been proposed few algorithms using
tabu search (3].

with the previous solutions generated by simu-
lated annealing based algorithms.

2 The Traveling Tournament
Problem

The traveling tournament problem was proposed
by Easton et al. [3] in 2001. In addition, several
benchmark instances of the traveling tournament
problem have been released on the website [8].

The traveling tournament problem is to find a
double round-robin tournament whose total trav-
eling distance is minimized. A double round-robin
tournament is a schedule satisfying the following
constraints:

(Cl) Each team plays every other team twice,
once at its home and once at away.

(C2) Every team plays one game in every round.
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Figure 1: A double round-robin tournament

(C3) Each game is held at the one of the home of
the playing two teams.

In this paper, we assume that each team has its
home cities, and the distance matrix among the
cities is given. Due to the constraints (C1) and
(C2), the number of rounds is 2(n — 1), where n
is the number of teams in a tournament.

Figure 1 is a schedule of a double round-robin
tournament of 4 teams. Each row is indexed by
teams, and each column is indexed by rounds.
Each row shows opponents of the team corre-
sponding to the row. Each entry with @ means
that the game is held at the home of the oppo-
nent, i.e., away game for the team corresponding
to the row. Each team stays/returns its home
cities before/after the tournament, respectively.
Thus, for example, team 2 in Figure 1 stays at its
home until round 3, goes to the home of team 3,
to the home of team 1, to the home of team 4,
and then returns to its home.

In addition to the constraints (C1)—(C3), the
following constraints are also considered for prac-
tical reasons.

(C4) No team plays more than three consecutive
games at away.

(C5) No team plays more than three consecutive
games at home.

(C6) No pair of teams plays against each other in
two consecutive rounds.

The total traveling distance of a double round-
robin tournament is the sum total of the traveling
distance of all teams. The traveling tournament
problem is defined as follows: for a given number
of teams n and a distance matrix among their
homes, to find a schedule of a double round-robin
tournament that satisfies the constraints (C1)—
(C6) and minimizes its total traveling distance.

The benchmark instances of the traveling tour-
nament problem are described in the webpage [8].
There are some class of instances, NLn, NFLn,
CIRCn and CONn. The instance class NLn con-
sists of instances NL4, NL6, NL8, NL10, NL12,
NL14 and NL16, where each number means the

number of teams. In NLn instances, the distance
matrices come from the real distances among the
home cities of the Major League Baseball teams.
It is difficult to obtain optimal solutions of
NLn instances. For the NL8 instance, an opti-
mal solution was obtained by using 20 PCs with
4 days of computational time [4]. The NL10 in-
stance is not solved yet, and the best objective
value and lower bound obtained are 59436 [1] and
57500 [8], respectively. In this paper, we concern
NL8 and NL10 instances with a tabu search algo-
rithm, which is described in the next section.

3 Algorithm

In this section, we propose an algorithm for the
traveling tournament problem. Our algorithm
employs tabu search. In Section 3.1, we explain
how to create an initial solution for tabu search.
In Section 3.2, the neighborhoods for tabu search
are described. In Section 3.3, the procedures of
our tabu search algorithm are shown.

3.1 Initial Solution

To generate an initial solution for tabu search,
we make use of the circle method [2], which is
a well known algorithm to create a round-robin
tournament.

In this paper, we define a single round-robin
tournament as a tournament satisfying the con-
straints (C2), (C3) and (C1’) defined as follows,
instead of (C1):

(C1’) Each team plays every other team once.
A single round-robin tournament created by
the circle method is as follows:
inround r (r=1,2,...,n—1),
e team 7 plays team r
— at the home of team n if r is even,
— at the home of team r otherwise,

e team % plays team j satisfying i + j =
2r mod (n —1)

— at the home of team j if r =i+ 2,7 +
4,...,i+n—2mod (n—1),

— at the home of team 1 otherwise.

By substituting teams, the circle method can pro-
duce n! different single round-robin tournaments.

Using the circle method, we create a double
round-robin tournament as follows. First, we cre-
ate a single round-robin tournament by randomly



substituting teams of a tournament obtained by
the circle method. Then, we create another sin-
gle round-robin tournament without assignment
of home/away. Such a tournament can easily
obtained by removing assignment of home/away
from a single round-robin tournament. Then, we
concatenate these two schedules to form a double
round-robin tournament. In particular, we should
assign home/away to games in the latter slots so
as to satisfy the constraint (C1).

We called the above procedure the modified cir-
cle method. Note that schedules created with this
method satisfy the constraints (C1)-(C3), but do
not necessarily satisfy the constraints (C4)—(C6).

3.2 Neighborhoods

The neighborhoods used in our algorithm are as
follows. The neighborhoods (N1)-(N5) are pro-
posed in [1], and the neighborhood (N6) is newly
proposed in this paper.

(N1) Swap Homes:
If teams 7 and j play at the i's home and j’s
home in the rounds r; and r3, respectively,
swap these two games. (As a result, teams ¢
and j play at the i’s home and j’s home in
the rounds rp and r;, respectively.)

(N2) Swap Rounds:
Swap rounds r; and re of a schedule. (In
other words, swap two columns of a sched-
ule.)

(N3) Swap Teams:
Replace all opponents of teams ¢ but j for all
opponents of teams j but ¢. (In other words,
swap two rows of a schedule.)

(N4) Partial Swap Rounds:
Swap two opponents of team ¢ in rounds r;
and 7y, and accordingly fix corresponding
games to satisfy the constraint (C1)-(C3).
(See [1] for detail.)

(N5) Partial Swap Teams:
Swap the opponents of teams 7 and j in
round 7, and accordingly fix corresponding
games to satisfy the constraint (C1)—(C3).
(See [1] for detail.)

(N6) Random Swap Rounds:
All rounds are permuted at random. This
neighborhood is used when the search pro-
cedure cannot find a better solution after a
long iteration (see the Section 3.3 in detail).

3.3 Tabu Search

Our algorithm is based on tabu search. Tabu
search is a metaheuristic algorithm for combina-
torial optimization problems. (See [6] for tabu
search.)

First, we described the basic operation of the
algorithm. Our algorithm searches the neighbor-
hoods (N1)-(N5) of a current schedule, moves
to the schedule of the best objective value, and
then continues to search the neighborhoods. After
20,000,000 moves, the algorithm terminates. Note
that an initial solution satisfies the constraints
(C1)—(C6), and moves using the neighborhoods
(N1)—(N5) do not produce schedules violating the
constraints (C1)—(C3). However, the constraints
(C4)—(C6) can be violated by this algorithm. If
a schedule violates the constraints (C4)-(C6), we
add a penalty to the objective value.

Next, we explain tabu lists in the proposed
algorithm. To avoid cycling, we keep the ob-
Jective value and the number of violation of the
constraints (C4)—(C6) in a short term memory,
whose length is n X n. In addition, we use a long
term memory to avoid using a same neighborhood
many times.

Finally, our algorithm force to move to an-
other solution from a current solution by using
the neighborhood (N6), if there is no improve-
ment in the objective value after the fixed num-
ber of moves in a search process. This jump is to
escape from a local optimal solution.

4 Computational Experi-

ment

To show the effectiveness of the proposed algo-
rithm, we performed computational experiments
as follows. The computational environment is as
follows: CPU Celeron 2.53 GHz, RAM 512 MB.
The algorithm is implemented in C++ program-
ming language.

We used the benchmark instances NL8 and
NL10. As mentioned, the optimal value of NL8
is 39721, and NL10 is not solved yet. For each
instance, we performed ten runs of the proposed
tabu search procedure. Tables 1 and 2 show the
results of experiments and CPU time, respec-
tively. To evaluate our results, Tables 1 and 2
also show the results of [5] and [9]. In [5], an
algorithm using tabu search was executed on a
1.5 GHz, AMD Athlon PC running Linux. The
algorithm in [9] using simulated annealing which
are known to be effective for the traveling tour-
nament problem were on an AMD Athlon 64 at



Table 1: The objective values of obtained schedules

n  old best min mean  max lower bound gap (%) min [5] min [9]
8 39721 39721 39721.0 39721 39721 0.00 - 39721
10 59436 59583 59702.2 59963 57500 0.24 59583 59436
Table 2: CPU time
n  min mean s. d. min [5] min [9]
8 77.58 529.76 461.56 - 1169.00
10 582.81 15915.39 18168.39 689 2079.06
2 GHz. and benchmarks, Lecture Notes in Com-
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