FEFEN SR
IPSJ SIG Technical Report

W

2007—MPS—65
200776725

A More Efficient Algorithm for Finding a Maximum
Clique with an Improved Approximate Coloring

Yoichi Sutani, Takanori Higashi, and Etsuji Tomita
Department of Information and Communication Engineering
The University of Electro-Communications
Chofugaoka 1-5-1, Chofu, Tokyo 182-8585, JAPAN

Abstract We propose a new, practical, and ezact algorithm for finding a mazimum clique in a graph. The
algorithm is a considerably improved version of the MCR algorithm, which is a very efficient branch-and-bound
algorithm. The improvement is achieved by devising a sophisticated procedure for approzimate coloring as well
as by introducing a novel strategy for ordering vertices in the branch-and-bound procedure. It is experimentally
demonstrated that the new algorithm is remarkably faster than MCR and other ezisting algorithms for most

benchmark instances.
1 Introduction

Many important problems can be formulated as
maximum clique problems. Therefore, efficient
algorithms are strongly required for finding a
maximum clique in a graph.

The authors have devised an efficient branch-
and-bound algorithm, MCRJ[11], for finding a
maximum clique. In this study, we propose a
new algorithm that is more efficient than MCR
for finding a maximum clique. The new al-
gorithm is obtained by significantly improving
the approximate coloring procedure, which is
essentially important in the branch-and-bound
method and the ordering of vertices. It is exper-
imentally demonstrated that the new algorithm
is remarkably faster than the MCR algorithm
and other existing algorithms for most bench-
mark instances.

A preliminary version of this paper was pre-
sented in {8].

2 Definitions and Notation

We are concerned with a simple undirected
graph G = (V, E) with a finite set' V of ver-
tices and a finite set E of unordered pairs (v, w)
of distinct vertices called edges. For a vertex
v € V, let I'(v) be the set of all vertices that
are adjacent to v. We call |I"(v)| the degree of
v. In general, for a set S, the number of ele-
ments is denoted by |S|. For a subset R C V of
vertices, G(R) = (R, EN(R x R)) is an induced
subgraph. An induced subgraph G(Q) is said
to be a clique if (v,w) € Eforallv,w e Q CV

717

with v # w. In this case, we may simply state
that @ is a clique. In particular, a clique with
the maximum size is called a maxzimum clique.
The number of vertices of a maximum clique is
denoted by w(R).

3 Maximum
MCR([11]

Clique Algorithm

3.1 Main Body of MCR

The underlying algorithm MCR begins with a
small clique, and grows it or backtracks un-
til one clique is found that can be verified to
have the maximum size. We control this grow-
ing and backtracking process by applying the
branch-and-bound strategy. More precisely, we
maintain global variables) and Q0z, Where
Q consists of vertices of the current clique, and
Qmaz consists of vertices of the largest clique
found thus far. Let R C V consist of ver-
tices (candidates) that may be added to Q.
We begin the algorithm by letting Q := 0,
Qmaz = 0, and R := V (the set of all ver-
tices). We select a certain vertex p from R and
add p to @ (Q := QU {p}). Then, we compute
R, := RN I'(p) as the new set of candidate
vertices. This procedure is applied recursively
while Ry # 0.

When R, = 0 is attained, Q constitutes a
maximal clique. If @ is maximal and Q] >
|Qmaz| bolds, @mas is replaced by Q. We then
backtrack by removing p from @ and R. We
select a new vertex p from the resulting R and
continue the same procedure until R = 0 is at-

¢

tained.

3.2 Approximate Coloring

In order to prune unnecessary searching, we em-
ploy the so-called greedy approzimate coloring
of vertices, that is, we sequentially assign for
each p € R a minimum possible positive integer
value Nol[p] called the Number or Color of p so
that No[p] # Nojr] if (p,r) € E.

Consequently, w(R) < Max{No[pllp € R};
hence, if |Q| + Max{No[p|lp € R} < |Qmas|
holds, then we can disregard all in R.

After Numbers are assigned to all vertices in
R, we sort these vertices in the ascending order
with respect to their Numbers. We call this
numbering and sorting procedure NUMBER-
SORT (Figure 2 in [11]). We select a vertex
p in R from the last (right) to the first (left).

Let Max{No[r]|r € R} = mazno, and
Ci={reR|No[r] =i}, i=1,2,...,mazno.

3.3 Inmitial Sorting and Numbering

In the first stage of the algorithm MCQ[9],
which is a predecessor of MCR, vertices are
sorted in the descending order with respect to
their degrees and they are assigned simple ini-
tial Numbers (Figure 3 in [11]). At the begin-
ning of MCR, vertices are sorted and assigned
initial Numbers in a similar but more extended
way than in the MCQ algorithm. This con-
cludes the underlying MCR algorithm (Figure
4 in [11]).

4 Improved Algorithm

4.1 Improved Approximate Coloring

When vertex r is selected, if No[r] < |Qmaz| —
|@Q| holds then r can be disregarded by the
bounding condition, as mentioned in 3.2. Thus,
for a vertex p such that No[p] > |@Qmaz| — @,
it is desirable that the Number No[p] of p
could be changed to be less than or equal to

|@Qmas] — 1QI(% Nog). When we encounter
such a vertex p with Nop] =] Noy,, as men-

tioned above, we try to Re-Number p in the
following manner [3].

[Re-NUMBER p]
1) Try to find a vertex g in I'(p) such that

Nolg) = k1 < Noy, with |Cy,| = 1.

2) If such a ¢ is found, then try to find a
Number kg such that no vertex in I'(g) has the
Number ky.

3) If such a number ky is found, then Re-
Number g and p so that No[g] = k2 and No[p] =
k.

(If we can find no vertex g with Number ks as
above, no further action is performed.)

The above procedure for a vertex p with
No[p](=Nop) is named Re-NUMBER(p, Noy).
We apply Re-NUMBER to a vertex p only when
No[p] = mazno, since Re-NUMBER is rather
time-consuming.

4.2 Improvement in the Order of Ver-
tices

As mentioned in [9] and [11], the ordering of ver-
tices plays an important role in the algorithm.
In particular, the procedure NUMBER-SORT
strongly depends on the order of vertices, since
its main ingredient is a sequential coloring. In
our new algorithm, we sort the vertices just
in the same way as in [11] at the first stage.
However, the vertices are disordered in the
succeeding stages owing to the application of
Re-NUMBER. In order to avoid this difficulty,
we employ another ordered set V; of vertices
that preserves the order of vertices appropri-
ately sorted in the first stage. Such a technique
was first introduced in [7]. Subsequently, we re-
place the previous procedure NUMBER-SORT
in MCR[11] by the new procedure NUMBER-
SORT-Re.

4.3 Improved algorithm MCR-Re

Summarizing the above all, we have a new im-
proved algorithm named MCR-Re.

5 Computational Experiments

We have implemented the MCR-Re algorithm
in the programming language C (Compiler and
flags used: gce -02) and have performed com-
putational experiments to evaluate it. The com-
puter used is a Pentium4 3.60GHz CPU, and
is operated on a Linux operating system. The
computational times of other algorithms are ad-

Table 1: CPU time [sec| for random graphs

Graph dfmax MCR New COCR
o i) (1 MOR-Re I5) 6
0.7 | 14-16 0.018 0.0047 0.0035 0.0067 0.12
0.8 | 19-21 0.14 0.014 0.0078 0.065 0.15
100 | 0.9 | 29-32 3.67 0.038 | o 0.013 0.66 0.20
0.95 | 39-48 23.74 0.011 [o 0.0028 0.20
0.98 | 56-68 26.54 0.0012 0.00087
0.7 | 1819 3.85 0.68 0.41 3.02 1.65
0.8 | 24-27 192.68 12.29 4.55 147.29 8.69
200 | 0.9 | 40-44 > 10° 646.94 74.85 © 36.79
0.95 | 58-66 > 10° 1,272.31 | % 59.03
0.98 | 90-103 > 10° 30.90 | k% 0.21
0.5 | 12-13 0.36 0.15 0.13 0.20 113
00 | 06 | 1516 4.88 1.41 1.01 3.50 4.98
0.7 | 19-21 144.11 22.80 12.25 121.02
0.8 | 28-29 [l 26,235.96 1,264.10 | © 402.90
0.5 | 13-14 8.99 3.61 2.89 7.25 17.43
500 | 08 17 242.29 62.57 42.20 183.28
0.7 | 22-23 || 24,998.42 3,267.89 | o 1,599.68
0.75 | 26-27 >10% | 49,933.40 | © 18,517.74
0.3 | 910 1.98 1.28 1.19 1.64
1000 | %4 12 33.28 16.05 13.80 23.19
’ 0.5 15 1,107.70 394.71 302.83
0.6 20 > 10° 24,985.60 15,316.85

Entries indicated by %%, %, and ©

represent those that are more than or equal
to 100, 10, and 2 times faster than all the others in the same row, respectively.

justed according to the ratios as shown in the
Appendix in [11].

5.1 Results for Random Graphs

For each pair of n (the number of vertices) and
p (edge probability) in Table 1, random graphs
are generated so that there exists an edge for
each pair of vertices with probability p. The av-
erage CPU time required to solve these graphs
by the MCR-Re algorithm and other algorithms
are listed in Table 1. The averages are calcu-
lated for 10 random graphs for each pair of n
and p. In particular, the computation of the av-
erage CPU time for p > 0.95 are for 100 graphs,
since the variations among the graphs are very
large. Exceptionally, each “ > 10°” in dfmax
is a CPU time for only one graph.

Table 1 shows that the MCR-Re algorithm
is considerably faster than the MCR algorithm
for dense graphs.

5.2 Results for DIMACS Benchmark
Graphs

Table 2 lists the CPU times required by the
MCR-Re algorithm and other algorithms to
solve the DIMACS benchmark graphs[4]. This

table also shows that MCR-Re is decidedly the
fastest algorithm, with only few exceptions.

6 Concluding Remarks

Our new algorithm, the MCR~Re algorithm is
relatively simple and runs remarkably faster
than the other existing algorithms. Hence, it
can be useful for solving more practical prob-
lems. Our technique can also be effectively ap-
plied for generating large maximal cliques[10].

Acknowledgment

We would like to express our gratitude to
T. Akutsu and others for their useful discus-
sions and for collaborative studies. This re-
search was partially supported by Grants-in-
Aid for Scientific Research Nos. 16300001 and
19500010 from the Ministry of Education, Cul-
ture, Sports, Science and Technology, Japan.

References

[1] E. Balas, S. Ceria, G. Cornuéjols, G. Pataki. Poly-
hedral methods for the maximum clique problem. In
[4): 11-28, 1996.

2

8]

[4

(3l

(61

Iyl

Table 2: CPU time [sec] for DIMACS benchmark graphs

Graph
Name . | dfmax | MCR | MCR-Re New x + DF | COCR | MIPO
4 i1 5] 12 6l [
brock400_1 27 | 22,061 | 1,772 | o 714 >10,640
brock400_2 29 || 13,519 726 | © 307 >10,640 | >415
brock400_3 31 | 14,795 | 1,200 | o 483 >10,640
brock400-4 33 || 10,633 639 | o 256 >10,640 | >415
brock800_1 23 ff >10° § 17,790 9,799 >10,640
brock800_2 24 || >10° | 16,048 8,762 >10,640 | >415
brock800_3 25 | 91,031 | 10,853 6,008 >10,640
brock800.4 26 || 78,737 | 7,539 4,162 >10,640 | >415
c-£at500-10 126 [>10° | 0.024 0.027 0.016 0.015
hamming8-4 16 1.85 0.22 0.20 0.19 451 1.00 2913
johnsoni6-2-4 | 8 0.75 0.14 0.14 0.060 5.88 * 0.0017
MANN_a27 | 126 || > 10° 254 | o 0.78 >2,232 7,647 2.75
MANN 245 | 345 f| >10° | 3,090 | * 304 >10,640
p-hat300-3 36 780 | 10.82 | © 2.65 633 5.39
p hat500-2 36 133 314 | o 0.79 95.71 151
p.hat500-3 50 [>10°] 1,788 | * 157 >10,640
p-hat700-2 44 5300 | 4442] o 5.98 1,542 | 2544
p-hat700-3 62 i > 10° | 68,187 | * 2,504 >10,640 | >415
p-hat1000-2 46 >10° | 2,434 | * 239 >10,640
5an200.0.92 | 60 || > 10° 417 0.42 0.96 1,427 5 0.15
san200.0.93 | 44 | 42,643 0.16 | © 0.064 144 15.15
sand00.0.7.1 | 40 || > 10° 1.76 | o 0.55 >2,232 315
sand00.0.72 | 30 || > 10° 033 | o 0.13 113 118 505
sand00.0.7.3 | 22 || >10° 360 | o 1.46 456
5an400.0.91 | 100 f| > 10° 343 | % 0.12 5,335
5an1000 15 || >10° 4.82 222 | % 0.11 2,249
sanr200_0.9 42 || 86,954 289 | 42 >10,640
sanrd00.0.7 21 2,426 379 | o 187 11,767
gen200_p0.9.44 | 44 || 48,262 539 | 0 0.47 1.98 13.01
€en200.p0.955 | 55 9,281 | 15.02 1.25 096 | e 0.19
gend00_p0.9.55 | 55 | >10° | > 10° 59,653
Ci125.9 34 50.05 0.24 | 0 0.058 0.56 46.60
Entries indicated by %, ®, and O represent those that are more than or equal to 10, 5, and 2

times faster than all the others obtained within the time limits in the same row, respectively.

T. Fahle. Simple and fast: Improving a branch-and-
bound algorithm for maximum clique. ESA 2002,
LNCS 2461 485-498, 2002.

T. Higashi, E. Tomita. A more efficient algorithm
for finding a maximum clique based on an improved
approximate coloring. 7Tech. Rep. Univ. Electro-
Commun., UEC-TR-CAS5-2006: 2008.

D. S. Johnson, M. A. Trick (Eds.). Cliques, Color-
ing, and Sat. DIMACS Series in DMTCS, vol.26,
Amer. Math. Soc.: 1996.

P. R. J. Ostergard. A fast algorithm for the maxi-
mum clique problem. Disc. Appl. Math., 120: 197—
207, 2002.

E. C. Sewell. A branch and bound algorithm for the
stability mumber of a sparse graph. INFORMS J.
Comput., 10: 438-447, 1998.

Y. Sutani, E. Tomita. Computational experiments
and analyses of a more efficient algorithm for finding

(8l

[

a maximum clique. Tech. Rep. IPSJ, MPS-57: 45—
48, 2005.

Y. Sutani, T. Higashi, E. Tomita. A more efficient
algorithm for finding a maximum clique with an im-
proved approximate coloring. Tech. Rep. Summer
LA Symp., Hiroshima, Japan: 2006.

E. Tomita, T. Seki. An efficient branch-and-bound

algorithm for finding a maximum clique. DMTCS
2003, LNCS 2731: 278-289, 2003.

[10] E. Tomita, A. Tanaka, H. Takahashi. The worst-

case time complexity for gemerating all maximal
cliques and computational experiments. Theoret.
Comput. Sci., 363: 28-42, 2006.

[11] E. Tomita, T. Kameda. An efficient branch-and-

bound algorithm for finding a maximum clique with
computational experiments. J. Global Optim., 3T:
95-111, 2007.

