FEFEN SR
IPSJ SIG Technical Report

W

2007—MPS—66
20077974

BEWREERICHIT 2B REEROBmIRSIEF BRI T 2R fRE
L RISt gk EEERET
VBT KL 2N
BEREERICBOTHREEREBWETRICBII A Ay V2 — Y VIS ERE BRI KX

HEEEZ A, ARXTRMHEERICET 2ME TH A5G BEIEFHEIC LR L.
HRARBIEFIELZ SERSWEME L LTETIVLETY, BREREETS. TLT, RE

L7 BREIC R U T (T 5 o

An Approximation Algorithm of the Pickup Sequencing of a
Component Placement Machine for Printed Circuit Boards

Tsuyoshi YAMADA!, Mario NAKAMORI!,

! Faculty of Engineering, Tokyo Agriculture and Technology University

Today, almost all circuits of electronic devices are printed circuit boards. In the present
paper we consider the pickup sequencing problem, which is the most time-consuming as-
pect of board production. Since the pickup sequencing problem can be modeled as a set
multicovering problem, we propose a greedy algorithm based on the dual fitting analysis.

1 Introduction

Today, almost all circuits of electronic devices are
printed circuit boards(PCBs). One of the most
important processes is PCB assembly. In order to
achieve high rates of throughput in PCB assem-
bly machines, we have to generate instruction se-
quences of high quality. Among the many stages
of PCB assembly, that of component placement
is the most critical. In this process, components
are placed on a PCB by component placement
machines.

In the present paper, we consider the Multi-
Head Placement Machine, which is structurally
more complicated than the other component
placement machines. The Multi-Head Placement
Machine is configured for moving placement with
an arm with several heads, Automatic Nozzle
Changer (ANC) and feeder slots (see Figure 1).
Some authors 1> 3 %) focused on the the Multi-
Head Placement Machine. The components to be
placed on the circuit board are stored in tape reels
set in the feeder slots. The head can pick up a
component by using a nozzle from the feeder slot
and place the component on the PCB. The heads
first pick up several components, either simulta-

Arm
A
Conveyor Nozzle head
PCB
ANC
feeder slot reel

Figure 1: Multi-Head Placement Machine

neously (in what is referred to as gang-pick) or by
moving along the feeder array, and then above the
circuit board to place the components in the ap-
propriate locations. However, since differences in
the size of components mean that the same noz-
zle cannot place all of the components, nozzles
need to be changed. Nozzle changes are carried
out automatically by the ANC throughout the
process of component placement. The process of
component placement therefore consists of plac-
ing the components, picking up the components,
and changing nozzles.

(20)

AEG NHEG
X O -

Figure 2: Gang-pick

These three operations are performed alter-
nately and a set of these pickup and placement
operations is referred to as a task. In each task,
the arm carries out several pickup and placing op-
erations. When the placement of all of the com-
ponents required for the completion of a particu-
lar task is completed by the arm, the arm moves
to pick up the components required for the next
task from the feeder slots. A circuit board is com-
pleted when all of the tasks are finished.

2 Definition of the problem

In this paper, we consider Pickup Sequencing
Problem (PUSP). PUSP determines the sequence
of picking up components from the feeder slot.
The each feeder slot has only parts of kinds. Also,
the head can only one component. However, all
heads need not pick up the component. If one
head picks up one component, the arm may move
on the PCB to place the component.

The pickup sequence producing the minimum
picking time is given as the solution of PUSP.
The main cost of PUSP is the number of occur-
rences required for picking up all of the compo-
nents. The number of occurrences can be reduced
by the gang-pick (see Figure 2). The gang-pick
is that the arm picks up the several components
by one occurrence. In a word, that is a multiple
heads picking up one component each. If appro-
priate conditions are satisfied, such as if nozzle
and component types are matched, then it is pos-

Pattern Nozzle Used
(Head Number)
hl h2 h3 h4 h5
Pattem1 A A B B C
Pattem2 B B C D D
Pattem3 D A B C C

Figure 3: Examples of nozzle arrangements

Slot Kind of Required Num. of
position Comp. Nozzle Comp.
18 Cl A 4
20 C2 B 10
24 C3 C 1
22 C4 B 4
26 C5 D 6

Figure 4: Examples of feeder arrangements

sible to pick more components simultaneously.

Nozzle arrangement of the arm and feeder ar-
rangement are given and assigned before solving
PUSP. In other words, in PUSP, the information
that is supplied is the feeder arrangement and
nozzle arrangement (see Figure 3 and 4), We call
each nozzle arrangement the nozzle pattern. The
each pattern does not decide the number of tasks
used, but should minimize the total number of
tasks used by each pattern. In the feeder arrange-
ment, each component is distributed to each slot.
The each component have the information of the
required nozzle and the number of components.

In PUSP, gang-pick is a significant factor in re-
ducing the number of occurrences of picking up
all the components. The number of tasks is also
important, and in PUSP, the sub cost is the num-
ber of tasks. The object is reducing the number
of pick up components and the number of going of
arm on the PCB(it is task). The number of tasks
is reduced by the combination of components to
be picked up in each task. The criterion of evalu-
ating a solution of PUSP is whether the number
of occurrences of picking up components is the
minimum, and also whether the number of tasks
is reduced. PUSP is formulated mathematically
as a 0-1 integer programming problem.

3 The Algorithm

In this section, we propose an algorithm for PUSP
based on a greedy algorithm.
‘We use the following notation to describe the
algorithm.
N : upper bound of the number of tasks
J : the number of nozzles per arm
K : the last arm position
P : the number of nozzle patterns
T': the number of feeder slots

: nozzle pattern, where p € {1,2, ..., P}
: task, where n € {1,2,..., N}

: arm position, where k € {1,2,..., K}
: head number, where j € {1,2,...,J}

: slot number, where ¢ € {1,2,...,T}

B -

The greedy algorithm produces a solution in
which the objective function improves with ev-
ery iteration. This algorithm roughly consists of
two phases: searching arm position and searching
appropriate task.

The greedy algorithm scans the feeder slot from
the first arm position to the last arm position
in the phase of searching arm position. At each
scanning arm position k, the maximum set of
components that can be picked up by the arm is
calculated. The calculation is executed for each
nozzle pattern. The set of head numbers, which
is simultaneous picking set, is calculated and de-
noted by SPS(p,k).

After searching all arm positions for all noz-
zle patterns, the maximum SPS(p, k) is deter-
mined. The maximum SPS(p,k) may not always
be unique. We denote by w the set of the pair
(p,k) corresponding to the maximum SPS(p,k).

Next, the algorithm selects a pair (p,k) in w
after calculating the task occupation rate of each
SPS(p,k) in phase of searching the appropriate
task. We define the set of head numbers as
TS(p,n) in task n of nozzle pattern p in the con-
structed solution of each iteration. The task occu-
pation rate is shared in 7'S(p,n) of each p,n after
excluding the heads assigned to picking up the
components of SPS(p,k). We define task occupa-
tion rate TOR(p,k,n) as follows:

ISPS(p, k)|

TOR(p.k:m) = T =505

However, if TS(p,n) N SPS(p, k) # ¢, the value
of TOR(p,k,n) is defined as 0, because it is not
possible to assign SPS(p,k) to task n of the nozzle
pattern p.

The algorithm calculates TOR(p,k,n) for each
element of w for all tasks in each nozzle pattern
and searches the maximum value of TOR(p,k,n).

The pair (p,k) and task n are selected such
that TOR becomes the maximum value. We de-
fine p,k,n of the selected pair (p,k) and task n as

p' k' ,n’. If the value of TOR(p,k,n) in all elements
of w is zero (in this case, no SPS(p,k) will be as-
signed to any task), an arbitrary pair of (p,k) is
selected.

The algorithm assigns the SPS (p’,k’) to an ap-
propriate task n’ of the nozzle pattern. The ap-
propriate task is selected such that TOR is the
maximum. If the selected SPS cannot be assigned
to any task (that is, TOR cannot be calculated for
any pair (p,k) in searching the appropriate task
phase), the algorithm increments the number of
tasks and assigns the SPS (p',k’) to the gener-
ated new task in T'S. When assigning SPS (p',k’)
is completed, the algorithm returns to the search-
ing the arm position phase. The algorithm termi-
nates when all of the components are picked up.

4 Analysis

We considered converting PUSP to a problem
whose objective function is the number of all com-
ponents to be picked up without consideration of
the number of tasks. This problem is regarded as
a set multicovering problem without weight. Con-
sidering this problem, the proposed algorithm es-
sentially equal to the natural greedy algorithm for
a set multicovering problem. Let us, the number
of elements is E for a set multicovering problem.
The natural greedy algorithm achieves an approx-
imation guarantee of Hg by authers?) . There-
fore, the proposed algorithm achieves an approxi-
mation guarantee of H; in the number of picking
up all components for RPUSP.

5 Experimental Results

In order to evaluate the performance of the pro-
posed algorithm, we implemented our algorithm
and made experiments with randomly generated
data of PCBs. We generated two kinds of data.
The details of the generated data are as follows:

e J:5 and 10

e the number of nozzle patterns P:[2,5]

e the number of component types T:[10,25]
e the number of components ¢ C:[1,25]

e number of types of nozzles:(3,8]

The number of generated data was 200. The
number for the five nozzle data was 100 and the
number of ten nozzle data was 100. We im-
plemented the algorithm using Visual C++ for
Windows XP. The implementation of the algo-
rithm was performed on a Intel Xeon Processor 3
GHz and 4 GB RAM. We also obtained the opti-
mal solution with the default parameter of ILOG
CPLEX10.1. The time limit was four hours and
other options were the defaults in CPLEX.

Results of the five nozzle data showed the av-
erage gap of 2.55% for the number of picked-up
components. The average gap for the number of
tasks is 11.24%, which is relatively large given
that the number of tasks is small. In the re-
sults of the ten nozzle data, the average gap of
6.09% is for the number of all picked-up all com-
ponents. The average result for the number of
tasks is 4.42%. The each average gap is taken for
100 data.

The example of the experiments result in ten
nozzle data is shown in Table 1. Table 1 shows
the nearly optimal solutions and the obtained so-
lutions by our algorithm for the number of tasks.

The proposed algorithm achieves an approxi-
mation guarantee of H; (in this data, Hyp) indi-
cating that the accuracy of the solution decreases.
However, the number of tasks is better than the
results obtained for five nozzle data. In the re-
sult of the number of tasks, more data than for
optimal tasks existed (for example: Data No. 8
of Table 1). Even though the frequency of the
number of picked-up components was poor, the
number of picked-up components in one task is
large. This is because there are numerous picking
combinations associated with one task. Combin-
ing tasks works well since the number of picking
combinations is high in phase of searching appro-
priate task. Consequently, the number of tasks
indicates a tendency toward improvement as the
frequency of the number of picked-up components
decreases. The computation time of the proposed
algorithm was 0.1 second or less for all data.

6 Conclusion

In this paper, we considered the pickup sequenc-
ing problem. After formulating the problem, we

Table 1: Example of 10 nozzle result (Task)

No Cplex GR Gap(%) CplexTime(s)
1 20 26 30.00 119.3
2 23 23 0 14400
3 19 18 -5.26 14400
4 21 21 0 4.39
5 19 20 5.26 14400
6 25 25 0 2.67
7 25 26 4.00 17.23
8 32 24 -25.00 15.08
9 21 24 14.29 7.11
10 34 37 8.82 1.2
Average - - 4.42 -

proposed an algorithm for solving the problem by
heuristic methods.

Our findings show that our algorithm achieved
a solution that produces an approximately opti-
mal value for the number of components to be
picked up. However, within the context of the
number of tasks, there exists the potential for im-
provement of the algorithm.

References

1) Lee, S. H., Park, T. H., Lee, B. H., Kwon,
W. H. and Kwo, W.: a Dynamic Program-
ming Approach to a Reel Assignment Problem
of a Surface Mounting Machine in Printed Cir-
cuit Board Assembly, Robotics and Automa-
tion, 1998. Proceedings. 1998 IEEE Interna-
tional Conference, pp. 227-232 (1998).

2) Lovasz, L.: On the Ratio of Optimal Integral
and Fractional Covers, Discrete Mathematics,
Vol. 13, pp. 383-390 (1975).

3) Magyar, G., Johnsson, M. and Nevalainen, O.:
on Solving Single Machine Optimization Prob-
lems in Electronics Assembly, Journal of Elec-
tronics Manufactruing, Vol. 9, No. 4, pp. 249-
267 (1999).

4) Wilhelm, W. E., Arambula, I. and Choudhry,
N. N. D.: Optimizing Picking Operations on
Dual-Head Placement Machines, IEEE Trans-
actions on Automation Science and Engineer-
ing, Vol. 3, No. 1, pp. 1-15 (2006).

78‘ —

