FEEEA WL B
IPSJ SIG Technical Report

2007—MPS—66
2007793

Hierarchical Importance Sampling as Generalized
Population Convergence

Takayuki Higo! and Keiki Takadama?
I Graduate School of Interdisciplinary Science and Engineering, Tokyo Institute of
Technology
2 The University of Electro-Communications, Faculty of Electro-communication

abstract: This paper proposes a novel method, named Hierarchical Importance
Sampling (HIS), as a generalization of the population convergence, which plays an
important role in Optimization Methods based on Probability Models (OMPM)
such as Estimation of Distribution Algorithims and Cross Entropy methods. In
HIS, multiple populations are maintained simultaneously so that they have differ-
ent diversities. Experimental comparisons between HIS and general OMPM have
revealed that HIS outperforms general OMPM.

1 Introduction

Recently, Optimization Methods based on Proba-
bility Models (OMPM), for example, Estimation
of Distribution Algorithms (EDAs) 1] and Cross
Entropy methods (CE) [2], have been attracting
considerable attention. In general OMPM, one
population is maintained and is gradually con-
verged. The population convergence plays an im-
portant role in OMPM. However, the population
convergence is unstable method because there is
no chance to improve the obtained solutions once
the population converges.

To overcome the instability, this paper pro-
poses a novel method, named Hierarchical Impor-
tance Sampling (HIS), which can be used instead
of converging the population. Our basic idea is to
maintain multiple populations whose diversities
differ from each other. In other words, one pop-
ulation is almost random and another is almost
converged. The aim of this paper is to investigate
the effectiveness of the proposed method through
experimental comparisons between HIS and gen-
eral OMPM.

2 Optimization Method based on Proba-
bility Models

2.1 Estimation of Distribution Algorithm

A brief algorithm of EDA is summarized in the
following. At the beginning, samples are gener-
ated randomly as the initial population, and then
the population is updated iteratively. To update
the current population, first, a probability model
of the population is built, and then samples are
generated from the probability model. Promising
solutions in the generated samples are selected as
the next population by means of a selection op-
erator. Finally the population is completely re-
placed with the selected samples. An illustration
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Figure 1: Illustration of EDA and CE

of EDA is shown in Fig. 1.

In general, maximum likelihood (ML) esti-
mation is used for building probability models
in EDAs. Let p(z) and ¢{z) be a probability
model and a target probability distribution, re-
spectively. ML estimation selects the probabil-
ity model which maximizes the (expected) log-
likelihood defined as follows:

Lip(x)) = / g@)logplo)de. (1)

In practice, the empirical log-likelihood is used
for an estimator of the log-likelihood. By using
given samples X which are generated by ¢(), the
empirical log-likelihood is calculated as follows:

Lip() ~ = 3 logp(z), 2)
N X

where N is the number of samples X.

In the calculation of building a probability
model of a population X, it is assumed that
Xpop is generated from a certain target distri-
bution ¢(z) . The target distribution is natu-
rally defined by the employed selection operator.
For example, employing the truncation selection
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operator, which selects samples whose evaluation
f(z) are less than the threshold f in a minimiza-
tion problem, equals® to defining g(z) as follows:
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where I(-) is an indicator function and Z is a
normalizing constant defined as follows:

Z:/ﬂmw. (6)

In this paper, this probability distribution is
called partially uniform distribution. Another
candidate of the target distribution is the Boltz-
mann distribution.

2.2 Cross Entropy method

Cross Entropy method (CE) [2] is originally pro-
posed as a sampling method in the area of rare
event simulations. The difference from EDA is
that the target distributions described in Section
2.1 are explicitly defined instead of using a selec-
tion operator. In CE, the empirical log-likelihood
is calculated from the previously generated sam-
ples Xs(i)mp through importance sampling (3] as
follows:

L{pes1(x)) = % Z q;:zi;:)
)

“Asamp

log pry1(x), (7)

where Xs(fl)mp is a set of samples generated from
pi{z) and M is the number of the samples. Even
if we only know the value G:41(z) and/or pi(x)
which are proportional to ¢;41(x) and p(zx), re-
spectively, the empirical log-likelihood is calcu-
lated as follows:

1 Gi+a1(z)
L~y — ——— Z - log pyy1(z).
ngz)ﬂlp q%tzg(:;) X_Ef,)mp pt(‘r)
(8)

3 Hierarchical Importance Sampling
3.1 Theoretical Overview

Hierarchical Importance Sampling (HIS) main-
tains L number of populations Xy --- X 1. Each
X, is a set of samples which are generated from

Tt is assumed that ML estimation gives perfect prob-
ability model, that is, p(z) = g{z).

the corresponding probability model p;(z). Each
pi(x) is built with ML estimation to approxi-
mate the corresponding target distribution q;(x)
, which is given previously (the control method
of the target distributions is explained in Section
3.2). Thus, X; is approximately distributed ac-
cording to ¢;(x). It is supposed that g;(z) has less
diversity than g;_;(x). Therefore, it is expected
that p;(z) has less diversity than p;_;(z), and X,
contains better solutions than X; ;. Normally,
go(x) is the uniform distribution, and gy _1(z) is
the converged distribution.

Basically, HIS iterates the following two steps:
(1) sampling and (2) estimation. In the sam-
pling step, each X; is updated by sampling from
pi(x) and replacing the current population with
the generated samples. The sampling step is il-
lustrated in Fig. 2-(a).

In the estimation step, each p;(z) is updated to
approximate ¢;(x) more accurately than previous
one. The important point is that all the popula-
tions X, = XoU---U X _; is used for updating
each p;(z).2 The probability distribution of X,,
is given by a mixture distribution, which is de-
fined as follows:

pm(z) = Zalpl(x), (9)
1
M,
ap = m7 (10)

where M, is the number of samples in X;, and
thereby the empirical log-likelihood with respect
to g;(z) can be calculated via importance sam-
pling as:

1 a(z)

L(P(z)) ~ S, 2= () log py
i~ Pm

(). (11)

This is the same way as (7), and the way of (8)
is used in practice. The estimation step is illus-
trated in Fig. 2-(b).

If only the below population X;_; is used for
updating p;(x), HIS is reduced to the iteration of
CE. Consequently, HIS is a generalization of the
population convergence mechanism of EDA and

CE.

3.2 Target Distribution Control

For the partially uniform distribution, the size of
the search space can be given by the normalizing
constant (6) because the normalizing constant is

2For updating p;(z), we use only three populations,
which are above one X;_1, current one X;, and below one
Xi4+1 in practice. Here, X_1 and X, are supposed to be
null sets.
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the number of samples which can be drawn. The
normalizing constant is normally unknown, but it
can be calculated through importance sampling
as follows:

Z = /(j(ac)da:, (12)

q(x)
. 13
M Z p(m (13)

In an importance sampling as:

q(z)
(14
M Z qi- 1(55) (=) )
-1(x)

% represents the probability of generating an
acceptable sample, whose weight q;{’ (f(l) is not

zero. 1t is clear that rejected samples do not con-
tribute to the importance sampling. Let us con-
sider the simplest case, that is, CE. In CE, the
sum of accepted samples is given by

1
E M4 Zz o (15)
and the maximization condition of (15) is given
by
Z Z141
= M, — 1
M, T 7 (16)

If estimators of Z;_, and Z;41 are obtained via
(14), the threshold parameter f; is updated so
that the corresponding normalizing constant Z;
satisfies Eq. (16).

4 Experiments

4.1 2D Ising Model

For benchmark function, we employ the problem
to minimize the energy of a 2D Ising model with
periodic boundary conditions. 20 x 20 grids are
tested. The cost function is given by

19 19
= —ZZ{J(IiJ’$Z+1'j)
i=0 j=0
+J(zij, i j41) ) (17)
1 Ty =I5
J(zi, ;) = 0 n#z, (18)

where z;; € {0,1} ,z20; = 20,5, and x; 20 = ;0.
Since the threshold of the partially uniform dis-
tribution cannot work precisely when some so-
lutions have the same cost function value, the
original cost function f(z) is slightly changed by
adding small random number € as follows:

fl@)=flz)+e

In the experiments, € is u x 10710, where u is a
random number uniformly distributed from 0 to
1.

(19)

4.2 Experimental Setup

We employ Univariate Marginal Distribution Al-
gorithm (UMDA) [4] as EDA. The probability
model is defined as:

HP (sw).

Here, learning rate « is introduced. The param-
eter w is updated by the following equation:

plzlw) = (20)

Wnew = (1 — @)Wora + cr0ML,, (21)

where Wpew, Woid, Warr, are a new parameter, a
previous parameter and a ML estimator, respec-
tively. This mechanism provides stable estima-
tion.

All parameter settings are described as follows:

e The number of generated samples in one
sampling M: 100, 500, 1000 or 3000.
e Cutoff rate ¢: 0.1, 0.3, or 0.5.

e Learning rate a: 0.5.
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Figure 3: Results of HIS for 2D Ising
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Figure 4: Evolution of EDA (M = 100,c¢ = 0.3)
and HIS (L = 10, M = 10) for 400-dimensional
Onemax

They are experimentally determined.

On the other hand, HIS uses the same prob-
ability model and the same estimation manner
as ones of UMDA. All parameter settings are de-
scribed as follows:

e The number of generated samples in one
sampling M : 10.

e The number of layers L: 10, 20, 30, or 40.

e Learning rate a: 0.5.
They are experimentally determined. Note that
the number of samples contained in X; is denoted
by M; and M; = M; = M. A layer is a set which
consists of a population, its target distribution,
and its probability model.

4.3 Results and Discussion

Fig. 3 shows the results of HIS and EDA for the
2D Ising. The horizontal axis represents the num-
ber of function evaluations while the vertical axis

represents the average cost function value. Each
point represents the average cost function value
of the best obtained solutions over 10 indepen-
dent runs at the corresponding number of func-
tion evaluations taken. Additionally, the results
of EDA are appended for comparison. Each point
of EDA corresponds to the average cost function
values of the obtained solutions and the average
number of function evaluations taken until the
population converges over 10 independent runs.
The standard deviations of the results of both
HIS and EDA are enough small to be ignored.

The results show that HIS must outperforms
EDA with any parameter setting if enough time
is given. Fig. 4 shows the optimization process of
EDA and HIS for a problem of 400 dimensional
Onemax [1]. As shown in the figure, generated
samples of EDA are converged, while ones of HIS
are never converged. Indeed, HIS is a general-
ization of iterative EDA, which means that EDA
is restarted from the initialization if the popu-
lation converges, and HIS uses historical results,
whereas iterative EDA discards them after the
population is converged.

5 Conclusions

This paper proposed Hierarchical Importance
Sampling (HIS), which can be used instead of the
population convergence, for Optimization Meth-
ods based on Probability Models (OMPM). Ex-
perimental comparisons between HIS and EDA
revealed that HIS outperforms EDA when being
applied to problems with local optima. A future
work is to add the population mechanism [5] to
HIS.
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