FEEEA WL B 200T—MPS—67 (57)
IPSJ SIG Technical Report 2007—BIO—11 (57)
2007712721

TF-IDF 7 4 V2 U 2 7\ K S #BERIERI L T2
EMERIENT Y — 7 7 0 —ORRFiE
W vERR, WR RA, 7rh B—, E HHk
KRIRRFEREDT SRR R

BE . £WESREFOSBTRNT, ATY —AREWZEOT —F 2 ShFMICH I FESBEEITR>TETNA. &
IUH DFEATY — b3k 2 IR IR S TR Y, FORIIMEZ S5 5. TV —/IL% Web 4 —EZDEET
BT OHELBZ CETEY, ThOFMASDLERLT =7 7o —L) FENEHIFERENCBOTERSE
WTWE, U7 72 —DERRPETEET 7200V —LORKLED LN TWS., AL T—2 7a—0fE
BAEXRT DD, V-7 7n—0BRARELLNEL 510> TEk., LHLBELETE, BFRAZITI D
WHRET— 7 7 —OREEITI ZEBESTIIRV. KRXTE, FHROWERY -7 7 n—2EREY—2 7
O—-DOHENLRBTLHFIELRETS. BEFEZRVAZLZLY, GV ERRCEMBERV— 7u—%
RETHZENTE,

Retrieving Functionally Similar Bioinformatics Workflows
using TF-1IDF Filtering

Junya Seo, Shigeto Seno, Yoichi Takenaka, Hideo Matsuda
Graduate School of Information Science and Technology, Osaka University

Abstract: In bioinformatics, dealing with tools to analyze biological data becomes important. Those tools are
provided by various institutions and the number of the tools is rapidly increasing. Recently many institutions
have been offering those tools and access to databases with Web service technologies. The workflow technology
is one of the ways to manage those tools and it is becoming available in bioinformatics. In order to compose
workflows, several research groups develop and provide workflow composing tools. And consequently, the
concept “Workflow Reuse” is also arisen in order to help workflow composition. Nevertheless it is still difficult
to search for the reusable workflows from the repository of workflows in the current situation. In this paper, we
propose a method to extract reusable workflows from the repository by using currently available information.
We could extract some functionally similar workflows as reusable ones. By extracting reusable workflows
efficiently, researchers can compose their workflow more easily.

1 Introduction bination with each other. In the typical case of using tools

sequentially, the output data of a certain tool is supplied
In the field of bioinformatics, the tools to analyze biological o an input of another tool. However, particularly, the use
data have been provided by various institutions. There are of the Web service requires the high leveled programming
many types of data and tools for biological analyses. Many skills. The hugeness of the number of tools and various

tools are developed for the same or similar analyses. For ways of using tools are also become the barriers for using
example, BLAST[2] and FASTA[9] are the tools to search geveral tools together.
DNA/Protein sequence databases. The number of tools has
been increasing year by year and now it becomes huge[3].
Therefore how to deal with them becomes important.
Recently several institutions have started to provide pro-
rammatic access to biological databases and analysis tools
%a,se d on Web service t ecghnologies[IS] (cg. XEI{/[BL[M], the ?:)usiness field, etc[14]. Researchers can corrllbine Web
openBQS[12], Soaplab analysis services(13], XML Central services, local tools' and some other resources mFo wor1.<—
of DDBJ[7] and the KEGG API[5)). With these publica- ﬂows.. They potentlally. allow researchers to describe th.e1r
tions of resources as Web services, researchers are making a experimental pro.cesses' mn stru_ctured, repeatal?le and VEj,I‘lﬁ-
shift from traditional navigation using hyperlinks through .:a.ble ways. By using this te.chmque, programming technique
a sequence of Web pages provided by those resources to = not needed so much. ,Flg'“l shows ?;n exar:lple of wsrk-
the use of distributed services such as Web services for ex- flow. The parentheses Wlth, sequence and “database” at
perimental design, data analysis and knowledge discovery. the tip of 1.;he wo.rkﬁow aie input terminals of the workflow
Nevertheless it is still difficult to compose distributed ser- and “multiple alignment” at the bottom of the workflow

) . 1w ”
vices with Web service technology, whether manually or au- 1“s flm Ollltpl,lt ternillnal. lT he sgu.aresh'wmh k]?lLASTd arllld
tomatically. In order to compose the services, researchers ClustalW” are the tools used in this workflow and the

should be familiar with some techniques such as program- parentheses with “seq”, “database” and “result” around

ming. the tools are input/out;')ut ports of the tools. In this case,
‘When researchers use analysis tools, some of them should work.ﬁ ow h.as two f:mctlons “Hom-ology Se.aICh” and “Get

be installed locally, others can be utilized via Web browsers ntlultlple alignment”. These functions are invoked sequen-

though the support of Web services. Usually, these tools are tially on the workflow.

not used solely in the biological analysis, but used in com- The increasing of the number of bioinformatics Web ser-

In order to solve the problems, workflow management
arose as a method of handling analysis tools[1]. Although
the workflows are not widely used yet, they will be in the
near future, which can be predicted from the situations in

— 259 —

(result)

(se
ClustalW

(result)

(multiple alignment
& p gnm

Figure 1: An example of workflow

vices makes management of workflows more important.
When researchers compose workflows, they choose some
services for their workflows. At this point, it becomes im-~
portant factor to consider what service or combination of
the services suit for their purpose. In order to help work-
flow composition, the concept to store and reuse workflows
arises[10]. In some repository of bicinformatics domain, re-
searchers are now starting to pile up the collections of work-
flows. Therefore how to utilize the repository will become
important.

As a related work on workflow search and reuse, a vision
for reuse of scientific workflows is described by Medeiros et
al. [6] for a closed system. But the paper does not consider
the on-line workflows. Also in some workflow composing
tools, such as Taverna, implement only search mechanism
of tools on a workflow. Thus users cannot search specific
workflows from the piled workflows by workflow function.
Now many workflow projects aim how to compose a work-
flow easily. Thus few workflow repositories have been made
publicly available and even fewer have similar workflows
in them which can be used to evaluate search techniques.
Some projects, such as Kepler[4] and Taverna, are building
a platform with workflow reuse in mind. Therefore search-
ing and reusing workflow from the on-line repository are
important as a next stage.

In this paper, we propose an extraction method of work-
flows from the piles of workflows by focusing functional
similarity. For this purpose, our method uses data types of
workflows indicated by data names. By extracting function-
ally similar workflows, researchers can use them for com-
posing a workflow for their target analysis.

2 Workflow

In this section, we describe the composition, reuse and
search for workflows. In order to refer to that, we also
describe the current situations around workflows.

2.1 Workflows in Bioinformatics

A workflow is a set of flows of operations and data. It
consists of local tools, Web services and data flows. The
local tools and Web services are executed according as the
description in a workflow. In bioinformatics, workflow tech-
niques are spreading among researchers because of increas-
ing the variation of analysis tools and developing of Web

service technologies[8]. Researchers frequently use combi-
nations of several analysis tools on their researches. The
connections between those tools are often managed man-
ually (e.g. copy and paste in web pages), and manually
management is often cumbersome[l]. Researchers can re-
move the burden of this management by using workflows.
Once researchers have composed a workflow, they can run
it as many times as they want. They can also make small
changes such as input data or thresholds to the workflow.
Workflows run automatically from input to output on work-
flow engines, therefore even if researchers change parame-
ters on their research, it is easy to do whole process again.

Fig. 2 shows the basic composition of workflows. A
workflow basically consists of “Workflow Input”, “Tool”,
“Workflow Output” (see the left side of Fig. 2). “Tool”
includes local tools and Web services. “Tool” also has “In-
put port” and “Output port”. Those are connected by
the arrows. The arrows indicate data-flows. Then right
side of Fig. 2 shows an example. The items at the top of
workflow are “Workflow Input”. In this figure, “input”,
“swiss_option” are the input terminals of workflow. Work-
flows basically run by considering these input terminals as
the start points. The next items show the input ports of the
tool. “file_direct_data” and “options” show input ports of
the “parse_ddbj_gene_info”. The next item shows the tool
that is “parse_ddbj_gene_info”. The tools execute some op-
erations on the workflow and combinations of these tools
construct the workflow function. The item “output” below
the tool name represents the output port of the tool. The
tools make some data as results of their work. Those are
passed to next tools or workflow output. The item at the
bottom of workflow is “Workflow Output”. “output” is the
output terminal of the workflow. The workflow outputs are
equivalent to workflow results and also those are the end
points of the workflow.

2.2 Workflow Composition

When researchers make workflow, they have to decide com-
ponents used in the workflow such as tools. There are two
ways to compose workflows mainly. One is to use program-
ming languages such as Java. Some programming languages
can invoke local tools and Web services. Researchers can
compose workflows as they like by using programming lan-
guages. However, in order to use those programming lan-
guages, researchers should have high programming skill.
Another way is to use workflow composing tools such as
Taverna[8]. Workflow composing tools, as its name indi-
cates, help researchers with workflow composition. Many
workflow composing tools have GUI interface, thus re-
searchers can compose workflows intuitively. Researchers
can compose workflows with few or no scripts by using
workflow composing tools, because those tools hide com-
plex architectures such as invoking of Web services. This is
an easier way of workflow composition.

If researchers compose their workflows with a workflow
composing tool, there is the problem about assurance of
their workflows. The workflow composing tools do not care
whether a tool can receive the data correctly from the previ-
ous tool, thus every tool can connect to every tool on those
workflow composing tools. But if there is difference of data
format between an output of the former tool and an input of
the latter tool, data-flow does not run correctly. Therefore
researchers should check all data-flow on their workflows

— 260 —

Workflow Input

Toout Port """ (file_direct_data)
put Po:

(inpu& (swiss option)iI

(options)

Workflow basic components

Output Port \
(output)

Workflow outpu (output)
— 0

7
I parse_ddbj_gene info |

Taverna workflow example

Figure 2: Workflow composition

strictly.

2.3 Workflow Reuse

For the difficulty of workflow composition, the concept
“Workflow Composition by Reusing Validated Workflows”
arise{10]. This concept is to modify validated workflows
when researchers compose new workflows. Validated work-
flows are the workflows composed by other researchers and
those are confirmed as work correctly. Fig. 3 shows an
image of the concept. In this figure, the cylinder with
“repository” shows the repository of workflows, the repos-
itory holds many validated workflows. “WE” shows vali-
dated workflows extracted from the repository for the tar-
get workflow. “tool” is a local tool or a Web service.
“Target Workflow” is a workflow which researchers want to
compose. A workflow can include other workflows as sub-
workflows. In this concept, the validated workflows from
the repository are also used as components like tools for
the target workflow. By using validated workflows as com-
ponents, researchers can compose assured workflows easily,
because validated workflows should run correctly. Even if
researchers are not satisfied with the validated workflows,
they can improve those workflows to compose target work-
flows. They improve an existing workflow that is close
enough to be the basis of a new workflow for a different
purpose, and making small changes to it. Such an approach
is the popular view in semantic Web services[10]. Actually
researchers in bioinformatics often use similar data-flows
with small changes. As described in section 1, collections
of workflows are now starting to pile up in some institu-
tions such as myGrid (http://workflows.mygrid.org.uk/
repository/). The workflow reuse will be more important
in near future.

However researchers cannot reuse workflows easily. Be-
cause it is hard to search for reusable workflows from the
repository. The reason of this issue is the lack of informa-
tion on workflows. Workflows have only flows of tools and
simple names of tools, inputs or outputs. Thus researchers
can search for one tool within workflows by the tool name,
but they cannot search for the combination of tools from
the repository by query function such as “Gene Annota-
tion”. There are few hints on workflows to consider that
whether their functions are “Gene Annotation”.

repository

PTLAA
.
0 &

Target Workflow I
S

Figure 3: Image of workflow composition by reusing

2.4 Search against Repository

In order to extract reusable workflows from the repository,
it is needed to extract workflows having similar function to
the query function. When researchers want to search for
workflows, they have data types of input and output. Once
data types are decided, those data types indicate their tar-
get function. Therefore it is necessary to search for and
extract functionally similar workflows from the repository
by using data types of input and output as query. Work-
flows include one or more functions and one of them can
be a target function, thus part of workflows also should
be extracted. But there are ambiguities in descriptions on
workflows. Thus we should consider how to extract work-
flows with tackling ambiguities of names and how to extract
whole and a part of workflows based on their functions.

3 Method

In this section, we propose a method for extracting work-
flows from the repository of workflows.

3.1 Overview

Our method extracts workflows from the repository of
workflows by a query. The query consists of a virtual work-
flow. The virtual workflow has names of input terminals,
names of output terminals and one virtual tool. This virtual
tool has no name and no ports. It only has a function de-
signed by a user and our method predicts the function. Our
method judges whether workflows in the repository have
similar function to the function of the virtual workflow.
The workflows in the repository are made with Taverna[8]

— 261 —

(result)

(sequence)
V, vy (seq
(sequence) (database)
e » (8
Virtual Tool
(“Homology Search”,
‘Multiple Alignment”) (multiple
i ™
e| (multiple alignment
alignment)
¢ -

query

repositofy

Figure 4: Functionally similar workflows

that is one of the workflow composing tools. Taverna is
the most widely used workflow composing tool in bioinfor-
matics. There are ambiguities on workflow descriptions of
Taverna, thus information that we can use are restricted.
Taverna workflow can only use names of tools, input/output
ports, input terminals and output terminals on workflows
without data types or data formats.

Our aim is to extract functionally similar workflows by
considering functions on workflows. We regard workflows
having similar functions hold similar types of input termi-
nals and output terminals. We also regard a combination
of data types on the input terminals and output termi-
nals as a function of the workflow. Especially we regard
data types on output terminals as important. If the out-
put terminals of two workflows have similar data types, we
suppose those are candidates of similar workflows and use
data types on input terminals to accurize the similarity.
Unfortunately workflows do not have such data types at
present. For this problem, we consider names of input ter-
minals, output terminals, input ports and output ports of
tools are semantically similar to the data types. For ex-
ample, when an input terminal has a name “sequence”, we
consider “sequence” represents a characteristic of the data
on the input terminal. In order to extract similar workflows
with similarity of data types on input terminals and out-
put terminals, we use simple text matching of their names.
Some workflows are still uncertain whether they have sim-
ilar functions to the function indicated by the query. Thus
we use Term Frequency - Inverse Document Frequency (TF-
IDF)[11] weight. This weight is a statistical measure used
to evaluate how important a word is to a document in a col-
lection. We implemented filtering algorithm with TF-IDF
to screen out uncertain results.

Fig. 4 shows the image of extraction by our method. Our
method receives a virtual workflow, and then extracts work-
flows that are considered as having similar function to the
function of the virtual workflow from the repository. For
example, they input a virtual workflow having input termi-
nals and output terminals such as “sequence”, “database”
and “multiple alignment” when researchers want to extracts

workflows that invoke functions homology search and multi-
ple alignment. Then, in Fig. 4, the combinations “BLAST”-
“ClustalW” and “FASTA”-“MEME” are extracted as the
combinations having similar function.

3.2 Algorithm

Input and output of our method are as follows:

Input:
a virtual workflow, repository of workflows

Output:
workflows

Our method consists of three steps.

Stepl:
Extract the candidates of functionally similar work-
flows from the repository by the names of output ter-
minals in the virtual workflow.

Step2:
Screen out candidates by the names of input terminals
in the virtual workflow.

Step3:
Eliminate uncertain workflows with TF-IDF.

In order to describe our method, we represent workflows
as labeled directed acyclic graph. We define the graph with
following notations.

V:
V indicates a set of nodes. The nodes represent tools,
input terminals and output terminals of the workflow.
Labels of the nodes mean names of the tools and the
terminals.

E = {e = (v1,v2)|v1,v2 EV}:
E indicates a set of edges. The edges mean the con-
nectivity in workflows. v; is the source of an edge and
ve is the destination of the edge. The edges have two
labels at the source point and destination point. Their
labels mean name of the output port and name of the
input port respectively.

— 262 —

57 2y
sequence «—— DNAsequence

comlen =8

Figure 5: Text matching

L=L(V)UL,(E)ULg(E):
L indicates a set of labels. L(V) means labels of
nodes. Ls(E) means labels of source point on the
edges. Lq(F) means labels of destination point on the
edges.

G=(V,E,L):
G indicates workflows.

For example, the workflow (a) in Fig. 4, V
{v1,v2,v3,v4,v5} and E = {e1,e2,e3,e4}. Then L(v3)
“FASTA”, Ls(e1) = “sequence” and Lg(e1) = “seq”.

We also use notations Gquery as the virtual workflow,
G repository 85 the set of workflows in the repository and
Grepository as a Workflow in G epository. We use a following
function in the algorithm.

. match(si,82)

1

Receives text s; and sz and returns truth-value
by following condition. We define length of s1 as
Siten, length of s2 as soren. Then we also define
the maximum length of perfect matching between
s1 and sz as comlen. Fig. 5 shows an example
of the text matching. Two strings “sequence”
and “DNAsequence” are the arguments s; and
s2 respectively. In case of Fig. 5, comlen is 8.

Without loss of generality, we regard Sijen >
S2len- When comlen/syen > 05 and
comlen/saien > 0.8, match returns TRUE. When
arguments do not satisfy this expression, match

returns FALSE.

In order to calculate these thresholds, we had an
experiment with small dataset from the reposi-
tory. We chose some extractable pairs of work-
flows and checked extractable values of this func-
tion respectively. We use the minimum values in
the experiment that can extract correct workflows
perfectly as the thresholds of this function.

3.2.1 Stepl:
Names

Similarity Search with Output

In this step, we extract the candidates of the functionally
similar workflows that can be considered as functionally
similar from the repository by names of output terminals
in the query. We define functionally similar workflow as
follows: the workflow receives one or several data as inputs
and results of workflow are the similar to the target work-
flow. Therefore we search nodes from the workflows in the
repository that are similar to the names of output terminals
on the virtual workflows. Then we consider the sub graph
that consists of ancestors of extracted nodes as candidates.

Our method extract nodes according to the following
conditions.

(result)
(multiple |«
alignment) D v

@)
Figure 6: Output example of Stepl

BGrepository € grepositorya
Jequery € Equery, 3 itory € E, itorys

pogit

matCh(Ld(equery)a Lqg (erepositofry)) =TRUE

Then our method outputs ancestor sub graph of

4 4 g ’
Urepository.d 05 G = (V',E',L")
(erepository = ('Urepository_sy v'repository.d))

In above equations, Equery is a set of edges of a virtual
workflow. Erepository is & set of edges of a workflow in the
repository. VUrepository.d i a destination node of an edge and
Upepository_s 18 & source node of an edge.

We extract the nodes satisfies the expression (1). Then
we output G’ that is a set of workflows G’ consists of the
ancestors of the extracted nodes. G’ is a sub graph of
Grepository-

For example, the equation (1) is calculated as follows in
the situation of Fig. 4.

Equery = €c
€repository = €4

Lg(ec) = “multiple alignment”
Ly(es) = “multiple alignment”
match(Lq(ec), La(es)) = TRUE
€4 = (’U4, ’05)

Therefore ancestors of vs are extracted as G’ like Fig. 6.
In workflow (), vs is an end node.

3.2.2 Step2:
Names

Similarity Search with Input

In this step, we search nodes from workflows extracted in
Stepl that can be considered as functionally similar with
names of input terminals in the query. Our method screens
out the candidates of Stepl and outputs survived candi-
dates as G’ by the following condition. G” is a set of
G’ = (V",E",L"). G" is a survived workflow in ex-
pression (2). In the following condition, v’ is a node does
not have outbound.

Jequery € Equery, 3¢’ € E,
match(Ls(equery); Ls(¢')) = TRUE

— 263 —

(result)
€4
v (an)

Figure 7: Output example of Step2

(multiple
alignment) OJ

For example, the equation (2) is calculated as follows in
the situation of Fig. 4 and Fig. 6.

€query — €a
/
e =€
Lg(eq) = “sequence”, Ls(e1) = “sequence”
match(Ls(ev), Ls(e2)) = TRUE

Equery = €p

e =e;

Ls(ey) = “database”, Ls(e2) = “database”
match{Ls(ea), Ls(€1)) = TRUE

v1 and vg satisfy the condition. Therefore a sub workflow
(a”) is extracted as G like Fig. 7.

3.2.3 Step3: Elimination of Uninformative
Results with TF-IDF

In this step, we eliminate the uninformative candidates with
TF-IDF. The expression of TF-IDF scoring is as follows.

N
w= tf X lo-g(E%

where w is the score of a word, tf is the number of oc-
currences of the word w in the workflows in the repository,
df is the number of workflows containing the word w and
N is the total number of the workflows. We used names of
input ports, output ports and tools in a workflow as target
words for the TF-IDF.

First we calculate TF-IDF for all words in a workflow
from Gquery and G” and get a keyword that has the highest
score in a workflow as follows.

KFEY (data):
This keyword is obtained from Ls(e), La(e), L () and
Lj(e) with TF-IDF. Therefore this keyword indicates
a name of input, output or ports in Gguery and G”.
KEY (tool):
This keyword is obtained from L(v) and L”(v) with

TF-IDF. Therefore this keyword indicates a tool name
in Gguery and G”.

Second, we eliminate (or not) according to following con-
ditions.

if

Table 1: Correctness of Querying

correctness(%)
90.5

correct | incorrect
143 15

match(KEY (data)query, KEY (data)”)
or
match(KEY (tool) query, KEY (tool)")

then

DO NOT eliminate this workflow G”'.
else

eliminate this workflow G”.

At match function, in above conditions, we changed the
thresholds as follows.

When comlen/siien > 0.5 and
comlen/ssten > 0.5, match returns
TRUE.

The thresholds differ from Step2, because the s1 and s2
is manipulated equivalently in Step3. Finally we output
the survived workflows in G”/ as the results of our method.

4 Experiment

4.1 Results

In order to evaluate our method, we implemented and
applied it to the workflow data of Taverna. The data
had 197 workflows and the number of tools included in
those workflows was 1458. We got these workflows from
repositories of myGrid (http://workflows.mygrid.org.
uk/repository/) and the examples distributed with Tav-
erna.

We divide into our method to two parts, querying with
virtual workflow and TF-IDF filtering. In order to validate
our method, we had some experiments for the querying,
filtering and combination of them.

4.1.1 Querying with Virtual Workflow

Table 1 shows the extraction result by querying with vir-
tual workflow. It consists of Stepl and Step2. “correct”
and “incorrect” show the correct/incorrect number in the
extracted results. We had an experiment with leave-one-
out to the all workflows. We checked the extracted re-
sult manually. When both virtual workflow (query) and
the extracted workflow receive similar input data and gen-
erate similar output data respectively, we considered two
workflows are candidates of the similar workflows. Then
we checked whether the extracted workflow works alterna-
tively on some level in a biological process. In this point,
when we considered the extracted workflow as it generates
almost same data with small changes, we judged the result
is correct.

We could extract functionally similar workflows with
90.5% correctness. But there were still 15 incorrect results.
Whether TF-IDF filtering can eliminate these incorrect re-
sults is important point.

— 264 —

Table 2: Correctness of Filtering

| correct | incorrect | correctness(%)
&) | 165 358 315
(b) | 200 323 61.9

Table 3: Correctness of Combination

| correct | incorrect [correctness(%)
virtual 143 15 90.5
combination 128 1 99.2

4.1.2 TF-IDF Filtering

It consists of Step3. In order to validate filtering, we had an
experiment with leave-one-out to the all workflows. Then
we checked the extracted results manually. The criteria
of the functional similarity are same as in querying with
virtual workflow.

Result (a) in Table 2 shows that we could not filter the
workflows well with the keyword obtained by TF-IDF. This
problem was occurred because of a difference between the
sizes of two workflows. There were many workflows that
have similar parts around the obtained keyword. There-
fore we changed criteria of the correct result in the result
(b). When two workflows have similar parts around the
keywords, we counted the pair as a correct result. Then
the correctness improved to 61.9%. This result shows that
the correctness will be higher if we compared similar size
workflows. Therefore it is necessary to cut out small part
from a workflow to use this filtering.

4.1.3 Combination

Table 3 shows the extraction results by querying with vir-
tual workflow and the combination (our method). “virtual”
indicates the method “Querying with Virtual Workflow”.
This result is same as Table 1. “combination” indicates the
our method that is combination of querying and filtering.

As a result, we could extract workflows in terms of the
function by names on workflow. We extracted function-
ally similar workflows in Step2. The correctness was 90.5%
and there were still 15 incorrect results. Then, in Step3,
we could eliminate 14 incorrect results with TF-IDF. After
Step3, the correctness was improved to 99.2%.

4.1.4 Extraction Example

We show two examples of the result workflows. First we
show a set of two workflows (Fig. 8). The query workflow
was composed of the input and output terminals from the
left one. The right one was an extracted workflow by our
method. It shows the correct result extracted in Step2 and
it also passed the Step3 successfully. The query workflow
has a function to get MEDLINE_ID by Probeset ID. The
extracted workflow has a function to get MEDLINE Record
by Probeset ID. In this case, name of input terminals have
same name between two workflows and name of output ter-
minals “medlineid” and “medline” are similar. The query
workflow gets “medlineid” with “probesetid” and extracted
workflow gets “medline” with a tool “ProbeSetld”. Data
management on their workflow is almost same. Therefore
we considered two workflows as functionally similar work-
flows, although two workflows do not have same function,

Table 4: TF-IDF keyword

query extracted
KEY (data) test_input test_output
KEY (tool) | merge. string list_to_string split

extracted one gets “medlineid” on its process after getting
“medline”.

Second, we also show the two workflows extracted by our
method (Fig. 9). The query workflow was composed of the
input and output terminals from the left one. The right one
was the extracted workflow. This result shows the incor-
rect result extracted in Step2, but the extracted workflow
was eliminated in Step3. The query workflow has a func-
tion to merge two input strings. On the other hand, the
extracted workflow has a function to get formatted BIND
record and split it. BIND is one of the biology databases.
In this case there were similar names of input terminals and
output terminals on workflow (in this case, there were same
names), but two workflows seemed to have opposite func-
tion (Marge and Split). Then the method checked TF-IDF
keyword on workflows in Step3. Table 4 shows the keywords
extracted with TF-IDF filtering. There were few similar-
ity between those keyword, thus we could eliminate this
extracted workflow correctly from results (each KEYgata
were little bit similar, but matching ratio were lower than
threshold). This result was also a good result.

In order to help making new workflow, our method out-
puts figures and workflow descriptions of extracted work-
flows. As Taverna has a mechanism to use a workflow as
a component of another workflow, users can build the ex-
tracted workflows into new workflows.

4.2 Discussion

Our method could extract workflows from the repository.
Results were not limited to whole workflow in the reposi-
tory. Our method extracted a part of whole workflow (sub-
workflow).

The correctness of the extracting seemed to have enough
high-ratio. Thus there were functional meaning in the com-
bination of names of input terminals and output terminals
on workflows. But there were also eliminated workflows in
spite of correct workflows. The correctness of the elimina-
tion (Step3) was 48.2% (14/29). This ratio was not so high.
As a future work, we have to improve elimination in Step3
with TF-IDF or other algorithms.

5 Conclusion

‘We proposed a method to extract workflows from their
repository that are similar to a query workflow. In order to
extract the workflows, we used text matching of the names
and the connection between tools. Then we improved cor-
rectness of the extraction with TF-IDF. The results seemed
good enough for researchers to use extracted workflow as a
component or for improvement to their research.

References

(1} Addis, M., Ferris, J., Greenwood, M., Li, P., Mar-
vin, D., Oinn, T. and Wipat, A.: Experiences with e-

— 265 —

[2

3

[4

5

6

(probt:setid)’.[l

(probeSetld)

Laffymapper _getemblaccnumberl | databaseid I
(getAccession (value)
NumberReturn)

(usa) (XRefDatabankId)

query
Figure 8: Query and extracted workflows (First result)

getMedlineids
(queryByXrefReturn

usas

srsebi_getmedlineid

(queryByArrayldsReturn)

l_j(medline)

extracted

(String_constant1 (String_constant2) /(String_constant)
(test_input) (String_Constant) (attachmentFormat)\, } (id) (idType)

idSearchAttachment

(stringlist) (separator) (attachmentList)
Merge_string list to_string (string) (regex)
(concatenated) € regex)
[split
(test_output) (split)
& (test_output)
query extracted

Figure 9: Query and extracted workflows (Second result)

Science workflow specification and enactment in bioin-
formatics, Proceedings of UK e-Science All Hands
Meeting 2003, pp. 323-337 (2003).

Altschul, S. F., Gish, W., Miller, W., Meyers, E. W.
and Lipman, D. J.: Basic local alignment search tool,
J. Mol. Biol., Vol. 215, pp. 403-410 (1990).

Bateman, A.: EDITORIAL, Nucleic Acids Research,
Vol. 34 (2006). Database Issue.

Bowers, S., Ludascher, B., Ngu, A. H. H. and
Critchlow, T.: Enabling ScientificWorkflow Reuse
through Structured Composition of Dataflow and
Control-Flow, ICDEW ’06: Proceedings of the 22nd
International Conference on Data Engineering Work-
shops (ICDEW’06), p. 70 (2006).

Kawashima, S., Katayama, T., Sato, Y. and Kanehisa,
M.: KEGG API: A new web service for accessing the
KEGG database, ISMB 2003 (2003).

Medeiros, C. B., Perez-Alcazar, J., Digiampietri, L.,
G. Z. Pastorello, J., Santanche, A., da Silva Torres,
R., Madeira, E. R. M. and Bacarin, E.: WOODSS and
the Web: annotating and reusing scientific workflows,
SIGMOD Rec., Vol. 34, No. 3, pp. 18-23 (2005).

Miyazaki, S. and Sugawara, H.: Development of
DDBJ-XML and its application to a database of
c¢DNA, Genome Informatics 2000, Vol. 11, pp. 380-
381 (2000).

[8] Oinn, T. et al.: Taverna: a tool for the composition
and enactment of bioinformatics workflows, Bioinfor-
matics, Vol. 20, No. 17, pp. 3045-3054 (2004).

Pearson, W. R. and Lipman, D. J.: Improved tools for
biological sequence comparison, Proc Natl Acad Sci.
US, Vol. 85, pp. 2444-2448 (1988).

Salton, G. and Buckley, C.: Seven Bottlenecks to
Workflow Reuse and Repurposing, Information Pro-
cessing and Management, Vol. 24, pp. 513-523 (1988).
Salton, G. and Buckley, C.: Term-weighting ap-
proaches in automatic text retrieval, Information Pro-
cessing and Management: an International Journal,
Vol. 24, pp. 513-523 (1988).

Senger, M.: Bibliographic query service (2002).
http://industry.ebi.ac.uk/openBQS/.

Senger, M., Rice, P. and Oinn, T.: SoapLab - a unified
Sesame door to analysis tools, Proceedings of the UK
e-Science All Hands Meeting, Vol. 18 (2003).

Shefter, S. M.: Workflow Technology: The New Fron-
tier: How to Overcome the Barriers and Join the Fu-
ture, Lippincott’s Case Management, Vol. 11, pp. 25—
34 (2006).

Stein, L.: Creating a bioinformatics nation, Nature,
Vol. 417, pp. 119-120 (2002).

Wang, L., Riethoven, J.-J. and Robinson, A.:
XEMBL: distributing EMBL data in XML format,
Bioinformatics, Vol. 18, pp. 1147-1148 (2002).

[9

[10

[

[12

[13

[14

(15

(i6]

— 266 —

