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In a previous paper, we proposed a novel ACO al-

gorithm named the cunning Ant System and showed
it to have better performance than existing ACO

algorithms. In this article, we analyze the cun-

ning Ant System focusing on the convergence pro-

cess of searches based on entropy of the pheromone

trail.
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1 Introduction

Ant colony optimization (ACO) has been applied
with great success to a large number of combina-
torial oprimization problems[1]. The first ACO al-
gorithm was called the Ant System (AS) [2], and is
applied to TSP. Since then, many advanced ACO al-
gorithms were proposed as extensions of AS. These
include Rank-Based Ant System (AS,qnk) [3], Ant
Colony System (ACS) [4], and MAX-MIN Ant Sys-
tem (MMAS) [5].

In the previous paper [6], we have proposed a vari-
ant of an ACO algorithm called the cunning Ant Sys-
tem (cAS) and evaluated the performance using TSP
instances available at TSPLIB. The results showed
that cAS worked well on the test instances and has

performance that suggests it may be one of the most
promising ACO algorithms. We also evaluate cAS
when it is combined with Lin-Kernighan (LK) local
search heuristics using larger sized TSP instances.
The results also showed promising performance.
cAS introduced an important scheme which we
call cunning. In constructing a new solution, cAS

®

uses partly existing partial solutions. With this scheme,

we may prevent premature stagnation by reducing
strong positive feedback to the trail density. How-
ever, analytical study on the effectiveness of using
this scheme remains for future work.

In this article, we analyze cAS focusing on the
convergence process of searches based on entropy
of the pheromone trail. The results showed clear
evidence that using partial solutions with the cun-
ning scheme can prevent premature stagnation in
the search.

2 An Overview of Cunning Ant
System [6]

cAS uses agents called cunning ants (c-ants), which
differ from traditional ants in the manner of solu-
tion construction. A part of each new solution is
taken from one of the previously generated solutions
(also called a donor ant; d-ant) whereas the remain-
der of the solution is generated probabilistically from
pheromone density 7;;(t) as usual, where ¢ is itera-
tion counter of the algorithm. In a sense, since this
agent in part appropriates the work of others to con-
struct a solution, we named the agent a cunning ant
after the metaphor of its cunning behavior.



In cAS, we maintain an archive consisting of m
candidate solutions generated in the past; kth so-
lution in the archive at iteration ¢ is denoted by
skt (B €{1, 2, ..., m}). At iteration t, a new c-
anty ;11 (solution) is generated for each position k
in the archive using the current sy i.e., solution in
this position, as the donor. Then, the newly gener-
ated c-anty ;11 is compared with its donor si ; with
respect to the objective function, and the best of the
two survives as the next solution in this position of
the archive, sk s41.

The pheromone density is updated with sg ;1
for k=1, 2, ..., m and 74;(t+1) is obtained as in
Ant System (AS) [2], keeping all pheromone den-
sities within the interval [Tmin, Tmaz] 88 in MMAS
(5]

Let us represent the number of nodes of partial
solution that are constructed based on 7;;(t), by I,
(i-e., ¢, the number of nodes of partial solutions from
its donor, is n — l). Then cAS introduces the con-
trol parameter v which can define E(l,) (the aver-
age of l;) by E(l;) = n x y. For each creation of
a new candidate solution, we determine s so that
E(l;) = n x v is satisfied. One simple approach is to
determine value of I, deterministically as l; = n x v,
where n is the problem size. In this research, we
used a probabilistic function defined in [6] (please
see reference [6] for details).

3 Definition of Entropy of
Pheromone Density

In cAS, the ~ is the most important parameter among
others. As seen in [6], cAS has good performance
with ~ values of [0.2, 0.5] without heuristic and v
values of [0.3, 0.5] with heuristic. In cAS, we may
prevent premature stagnation of the search, because
only a part of the nodes (n x 7 in average) in a
string are newly generated, and this may prevent
over exploitation caused by strong positive feedback
to T; ij (t)

In this paper, we analyze the convergence process
of cAS by measuring the diversity of pheromone den-
sity. To measure this diversity, we use the measure
of entropy. In this section, we define an entropy to
measure the diversity of 7;;(t) and prepare analysis
for the convergence processes in section 4.

We define I(t), entropy of pheromone density 7;;(t)
as follows:
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where, p;;(t) is defined for 7 # j and is

7i5(t)

pij(t) = @ (2
i

As is understood from the definition of entropy, the
upper bound of I(t) is obtained when all elements
of 7;(t) have the same values as found during the
initialization stage (t=0). This value is calculated
T =log(n—1). (3)
The lower bound of I(t) is obtained when all ele-
ments of 7;;(t) have values of Tyin OF Tiaz. Please
note here that how this occurs is different between
symmetric and asymmetric 7;;(t) as is true for sym-
metric TSP and asymmetric TSP, respectively. Let’s
consider an extreme case that all strings have the
same set of edges and put the pheromone on the
set. If this iteration continues for a long time, all
elements of 7;;(t) converge to Tynin OF Trmag-

In a symmetric case, a node is connected to two
nodes and has two non-directional edges with the
same magnitude of pheromone density. On the other
hand, in an asymmetric case, although a node is con-
nected to two nodes, they are directional. There-
fore, for the symmetric case, 7; (j=1, 2, ..., n)
converges when the value of the two elements equal
Tmaz a0d the other n-3 elements equal 7,,;, for each
i (i=1,2,...,n). On the other hand, for the asym-
metric case, 7;; (j=1, 2, ..., n) converges when one
element of 7;; is Tynez and the other n—-2 elements
are Tpip for each i(i=1, 2, ..., n).

Thus, the lower bounds of I(t) for symmetric and
asymmetric cases are obtained as

_ 2r log(r)
Is =log(2r +n — 3) 7 rn—3 (4)
. rlog(r)
Li=log(r+n-2)- ZED_ )

where © = Tya0/Tmin.
In the following analysis, we use the normalized
In(t) which is defined with I(t), I, and [ as

vy = =1 ©

Then, In(t) takes values in [0.0, 1.0].

4 Results

Figures 1-7 show the convergence processes of cAS
on the test problems in QAPLIB using In(t) and
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Error. In each figure, the left is change of Iy and
right is change of Krror. The ~ values were tested
for 0.1, 0.3, 0.5, 0.7, and 0.9.

From Figures 1-7, we can clearly observe that
with smaller values of v, values of entropy Iy defined
by Eq. 6 decrease slower than with larger values of
as tour construction numbers increase, resulting in
successful searches in performance measure Error.
With larger values of «, values of entropy decrease
faster than with smaller values of v, and we can
observe stagnation of the search.

Thus, we can see the usefulness of the cunning
scheme with smaller values of . That is, on average,
taking the rate of (1 —~) partial solution from exist-
ing solutions, and having the rate of v partial solu-
tion being generated anew from the pheromone den-
sity can maintain diversity of the system, resulting
in good balance between exploration and exploita-
tion of the search. However, with extreme smaller
values of v, i.e., v <0.1, the search processes become
much slower, though the diversity of pheromone den-
sity can be maintained. Thus, to choose appropriate
smaller vy values is important.
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Figure 1: Convergence process on eil51

Figure 8 shows the convergence process with LK
heuristic on r15934 instance for cAS with v value of
0.4 and v vale of 1.0 (y = 1 means that no cun-
ning action is apllied). We can see a clear difference
between convergence processes of two systems ob-
served in Error. However, we cannot observe clear
difference in entropy measure until around 300 tour
constructions. Around this point cAS with v = 0.4
found optimal solutions (Krror = 0). Beyond this
point, the entropy of cAS with v = 0.4 is even
smaller than cAS with v = 1. Thus, usefulness of
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Figure 2: Convergence process on kroA100
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Figure 3: Convergence process on d198
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Figure 6: Convergence process on krol124p
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Figure 8: Convergence process on r15934

cAS when it is combined with LK heuristic can be
observed, we cannot explain the evidence from en-
tropy analysis. For analysis of cAS which is com-
bined with powerful heuristics, we need to introduce
other more finely-tuned measures.

5 Conclusion

Analysis of the cAS entropy measurement showed
clear evidence that using partial solutions in gener-
ating new solutions in ACO algorithms is useful to
maintain the diversity of the pheromone density, i.e.,
using partial solutions can prevent premature stag-
nation by reducing strong positive feedback to the
trail density, resulting in higher performance of the
algorithms.
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