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Abstract
The main purpose of this paper is to present a new way to measure the degree of the
complexity of organized systems. For this purpose, we define a new notion of complexity,
called system complezity. Conditional system complexity and a resource bounded variant
of system complexity are also presented. In particular, we show that the polynomial-time
bounded conditional system complexity is closely related to the knowledge complexity
introduced by Goldwasser et al. In addition, we show a way to measure the amount of
transmitted information from sources to destinations and inference processes in the light of
system complexity. Incompleteness and practical measurement are also discussed. Finally,
a number of applications to computational complexity, communications, and biological

automata theory are presented.

1)

23)



1. Introduction

In 1948, Weaver classified scientific problems into
three classes: problems of simplicity, problems of disor-
ganized complezity, and problems of organized complez-
i#ty[W]. The classical dynamics can be used to analyze
and predict the motion of a few ivory balls as they move
about on a billiard table. This is a typical problem of
simplicity. Imagine, then, a large billiard table with
millions of balls rolling over its surface, colliding with
one another and with the side rails. Although to be
sure the detailed history of one specific ball can not be
traced, statistical mechanics can analyze and predict
the average motions. This is a typical problem of dis-
organized complexity. Problems of organized complex-
ity, however, deal with features of organizations such
as living things and artificial machines. Here, cells in
a living thing are interrelated into an organic whole,
whereas the balls in the illustration of disorganized com-
plexity problems are distributed, in their positions and

motions, in a helter-skelter manner.

The degree of complexity is an essential notion in
problems of disorganized complezity, and is measured by
entropy as defined in statistical mechanics. In a simi-
lar manner, disorganized complexities of sources and
strings are measured by Shannon entropy[SW] and Kol-
mogorov complexity[K, C1]. Although these three ap-
proaches are obviously different, they have been shown

to share a number of similar properties[SW, C2].

In problems of organized complezity, the degree of
complexity is also an essential notion. Imagine a situa-
tion in which we are receiving a signal from deep space.
If the signal is perfectly random (e.g., a random noise
radio wave) or perfectly regular (e.g., a regular radio
wave pulse from a pulsar), then we do not suppose it is
being sent by an intelligent creature. On the contrary,
if we notice that the signal is constructed according to a
complicated rule (e.g., the radio wave pulse represents
a prime numbers sequence), then we would know that
intelligent creatures exist in deep space. In this situa-
tion, the degree of organized complexity of the signal
plays an essential role in deciding whether the signal is
sent by intelligent creatures or not.

How, then, can we measure the degree of organized
complezity? The following two examples show that the
notions of entropy and Kolmogorov complexity cannot

be used.

First, if a supercomputer is broken up into ran-
dom pieces, then the degree of organized complexity of
the randomly broken supercomputer is at the minimum
level, while its entropy is at the maximum level. Sec-
ond, a random alphabet sequence which a chimpanzee
has typed has a considerably higher value of entropy or
Kolmogorov complexity than the plays of Shakespeare.
Obviously, the degree of organized complexity of the
former sequence should be much less than that of the
latter.

On the other hand, the notion of negative entropy
(negentropy [Sc]) cannot be a measure of organized com-
plexity either, because the perfectly regular thing, or
the most simply organized thing, has the maximum ne-
gentropy value.

Thus, a new notion for measuring the degree of
organized complexity is needed. The measure of or-
ganized complexity should meet at least the following
conditions.

(1) Perfectly random things have the minimum orga-
nized complexity value. (They have the mazimum
entropy or Kolmogorov complexity value.)

(2) Perfectly regular things have the minimum orga-
nized complexity value. (They have the mazrimum

negentropy value.)

Then, what is the common property of perfectly
random and perfectly regular things in light of orga-
nized complexity? Also, what is the common property
of things with a high organized complexity value? We
can describe the characteristics both of perfectly ran-
dom and perfectly regular things in the simplest man-
ner. On the contrary, we must create a complicated
description to explain the characteristics of a supercom-
puter or the plays of Shakespeare. This fact leads to a
thought regarding the measure of organized complexity:
Something like the quantity of description required to
characterize an organized system can be the measure of
its organized complexity.

In this paper, we present a new way to measure
the complexity of organized systems on the basis of the
above concept. To do this, a new notion of complexity
of organized sources is defined, because the complexity
of many organized systems can be approximately repre-
sented as the complexity of the outputs, or sources, from
these systems (Remember the above-mentioned exam-
ple of signals from deep space, in which we estimate

the complexity of a system through observing a signal
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from the system). The complexity is also the measure
of the quantity of information that a source contains
in relation to some kind of semantics (Remember the
above-mentioned example of the plays of Shakespeare
and the sequence typed by a chimpanzee).

The new definition has its origin in Kolmogorov
complexity. Roughly speaking, this new complexity,
which we will refer to as system complexzity, is defined
based on probabilistic Turing machines, whereas Kol-
mogorov complexity is based on deferministic Turing
machines. For example, the system complexity of a per-
fectly random source is the lowest because the proba-
bilistic Turing machine can generate a perfectly random
source by the shortest program. Furthermore, the sys-
tem complexity of a perfectly regular source is also the
lowest because the probabilistic Turing machine encom-
passes the capability of the deterministic Turing ma-
chine, and the deterministic Turing machine can gen-
erate the perfectly regular source by the shortest pro-
gram. Then, Kolmogorov complexity corresponds to

system complexity, when a source is deterministic.

In section 2, the system complexity and conditional
system complexity are defined. System complexity in
this section is defined under the conditions of a resource
unbounded Turing machine. For Kolmogorov complex-
‘ity and Shannon entropy, some resource bounded vari-
ants have been proposed [H, Si, BB, Y]. In section 3, we
present a resource bounded variant of system complex-
ity. In particular, the polynomial-time bounded condi-
tional system complexity is shown to be closely related
to the knowledge complezity defined by Goldwasser et
al.[GMR]. In section 4, we show a way to measure the
amount of information transmitted from a source to a
destination by means of the conditional system com-
plexity. This amount depends not only on the source’s
properties but also on the capability and knowledge which
are held at the destination. For this definition of the
information amount, the notion of inference process and
the capability bounded system complexity are also intro-
duced. In section 5, we offer some discussions regarding
incompleteness and practical measurement. Finally, in
section 6, we show system complexity can be applied to
many areas including computational complexity, com-

munications, and biological automata theory.

2. System complexity of sources

Definition 1. Y = {0,1} and £* = {A,0,1,00,01...}
is a set of finite binary strings. A is the empty string.

{(z) is the length of a string z € *. " = {2 | I(z) =

n,z € ¥*}. N is the set of natural numbers.

Definition 2. A Probabilistic Turing machine (PTM)
is a Turing machine with a read-only input tape, a work
tape, a write-only output tape, and a read-only random
tape. The random tape contains an infinite sequence of
random bits. The random tape can be scanned only
from left to right. When we say that the PTM flips
a coin, we mean that it reads the next bit of its own

random tape.

Definition 3.
tion Px, over ¥", where }__.5n Px,(2) = 1. A source
set X is a set of sources {X,, | n € N}.

A source X, is a probability distribu-

Definition 4. The partial functions ¢; : ¥* x £* —
¥* and M;:X¥* - X computed by a PTM M; is
defined by

$i(p; @) = =z,
Puyp)(®) = D _ Pr{gi(p; ) = 2},

where p is an input, and « is the string of coin flips
it takes the PTM to compute = from p. If no such =
exists, ¢;(p; @) is not defined. Note that this definition
differs from that in Gill[Gi].

The next theorem implies that i is an acceptable Godel
number of the partial recursive functions.

There exists a universal PTM M, such
that ¢, (< i,p >; @) = ¢i(p; o) for every binary string

Theorem 1.

a. In particular, My(< i,p >) = M;(p) for every i
and p. Here, we assume a standard computable pairing

function < i,p >.

The proof of this theorem uses simulations essentially
identical to that used for deterministic Turing machines.
Theﬂ, we define the system complexity of a source X,, €
X with respect to the partial function M; computed by
a PTM M; as the length of the shortest program which
generates the source.

Definition 5.
tion, and X,, € X.

Let M; : ¥* — X be a partial func-
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Si(Xa) = min{l(p) | Mi(p) = X}
If no such p exists, then 5;(X,) = o0.

This complexity measure depends in an essential way on
the function M;. We almost get rid of this dependence
by means of the following theorem, in the same manner

as for Kolmogorov complexity.

Theorem 2. There exists a universal function M,

such that for any function M;
Su(Xn) < Si(X5) +¢,

where X,, € X, and c is a constant (dependent on M,
and M; but not on X, ).

In an analogous way we can introduce the concept of

conditional system complexity.

Definition 6.

function.

Let M; : £* x £* — X be a partial

8i(Xn | 1) = min{l(p) | Mi(p,t) = X},

where X, € X and p,t € X*. If no such p exists, then
S.'(X,, | t) = 00.

Theorem 3. There exists a universal function M,

such that for any function M;
Su(Xn | 1) € Si(Xn | t)+¢,
where X,, € X, t € ¥*, and c is a constant.

Definition 7.  The system complezity of a source
X, € X is defined by S,(X,) for a universal PTM M,,
and is simply written by S(X,). The conditional system
complezity of a source X,, € X with respect to a siring
t € ©* is defined by Sy(X, | t) for a universal PTM
M, and is simply written by S(X, | ).

Example 1.  Let source X,, € & such that Px,(z) =
2-" where z € X" (that is, X, is a perfectly random

source). Then,
5(Xn | n) =0(1),
where O(1) denotes a function whose absolute value is
less than or equal to a constant.
Note that the Shannon entropy of this source is n.

Exafnple 2. Let source X, € X such that Px, (z) =

1if ¢ = 1" € " and 0 otherwise (that is, X, is a

perfectly regular source). Then,
S(X, | n)=0().

Note that the Shannon entropy of this source is 0.

3. Resource bounded variant of system com-
plexity

In this section, we show only a time bounded variant of
the system complexity. The space bounded variant of
the system complexity can be shown in a similar man-
ner. First, we define a variant of the indistinguishability
introduced by Yao[Y] and Goldwasser et al.[GM].

Definition 8. Let X, € X, Y, € X be two
sources. Let a distinguisher D be a PTM that on in-
put strings from a source outputs either 0 or 1 and
halts within f(n) steps. X, and Y, are at most g-f(n)-
distinguishable, if for any D

| Pr{D(X,) = 1} = Pr{D(Ya) = 1} [< g(n) + 1/ f(n),

with a sufficiently large n. We say that X, and Y; are
f(n)-indistinguishable, when they are at most 0-f(n)-
distingishable .

Definition 9. Let M; : ©* — X be a partial func-
tion, and X, € X. :

S/ (X,) = min{l(p) | Mi(p) and X, are f(n)-indis-
tinguishable; M;(p) halts within f(n) steps with large
enough n }.

If no such p exists, then S/ (X,) = oo.

Theorem 4. There exists a universal function M,

such that for any function M;
S(Xa) < SH(Xa) +o,

where ¢ is a constant, and

S.(,f)(X,.) = min{l(p) | My(p) and X, are f(n)-indis-
tinguishable; M, (p) halts within (cf(n)log f(n) + c)
steps with large enough n }.

The proof of this theorem is obtained by the Hennie-
Stearns simulation theorem [HS], in a manner similar
to that shown in [H].

€4)




Definition 10. The f(n)-time bounded system com-
plexily of a source X,, € X is defined by S,(/)(X,,) and
is simply written by S¢)(X,,).

The f(n)-time bounded conditional system complexity
of a source X, € X' with respect to a string z € &*
is similarly defined by S.(,f)(Xn | z), simply written as
s¢ )v(X,. | 2). SY)(X, | @) represents the amounts of
information which the sequences of source X, contain
when the destination includes the knowledge z. Here,
the resource is limited to within f(n). This notion is
shown to be closely related to the knowledge complexity
introduced by Goldwasser et al.[GMR]. First, we define

a non-interactive variant of the knowledge complexity.

Defintion 11.
of length n. We say that (X,,,z) has a non-interactive

Let X, be a source and z be a string

knowledge complexity no greater than r(n), if there ex-
ist a polynomial time PTM A such that A(z) and X,
are at most g-poly(n)-distinguishable, where r(n) =
| —log(1—g(n))], and poly denotes any polynomial func-
tion. We denote this fact by (X,,z) € NKC(r(n)).

Theorem 5. Let X, € X and z € E". If (X,,,2)
€ NKC(r(n)), then

S (X, | 2) < r(n) +0(1).

(An informal proof sketch)

Let a(A) be a coin flips subset of A(z), and ap(4, X,)
be a coin flips subset of A(z) that corresponds to the
same output from each D as X, gives. #{Z} denotes
the number of elements in a set Z. Let A*(z) be A(z)
which minimizes the value of g(n) and the minimum
value be g*(n), where X, and A(z) are at most g-
poly(n)-distinguishable. Then, for any distinguisher
D, the probability that A*(z) and X, give the same
output from D is at least (1—g*(n)) , because Pr{D(X,,)
= 1} is asymptotical to 1 or 0. Then, we will show
that a subset whose elements number ratio to #{a(A*)}
is at least (1 — g*(n)) is common among ap(A*, X,),
for all D’s. If we can show this, we can represent the
common subset with information whose size is at most
|—log(1—g*(n))], and we can generate X,, by the coali-
tion of the most powerful D and A*(z), and using at
most | —log(1—g*(n))] bit information. Then, the pro-
gram lengths of D and A* are bounded.

ap(A*, X,) differs for each D. If there are subsets

ap,(A*, X,,) for Dy and ap,(A4*, X,) for Dy such that
the ratio of #{ap, (A*, X, )Nap,(A*, X,)} to #{a(A*)}
is less than (1 —g*(n)), then the coalition of D; and D,
can distinguish A* from X,, with a probability no less
than g*(n). Thus a subset

whose elements number ratio to #{a{A*)} is at least

This is a contradiction.

(1 — g*(n)) is common among ap(A*, X,), for all D’s.
g

4. Transmitted information and inference pro-

‘cesses

In this section, we show the amount of information
transmitted from a source to a destination with respect
to inference processes. First, we define the capability
bounded system complexity, the inference process and
the transmitted information amount. Then, we show
the results regarding the relationship between the trans-
mitted information amount and the capability bounded
conditional system complexity. First, we define another

variant of the indistinguishability.

Definition 12. Let X, € X, Y, € X be two
sources. Let @ C {M | M is a PTM}, and Dq € Q be
a distinguisher that on input strings from a source out-
puts either 0 or 1. X,, and Y;, are Q- f(n)-indistinguisha-
ble, if for any Dg € Q

| Pr{Dq(Xn) = 1} ~ Pr{Dq(Y,) = 1} |[< 1/f(n),
with a sufficiently large n.

In a manner similar to that shown in Definition.9, 10,
Theorem.4 and [H], we can define the capability bounded
system complexity, .S'? &4 (Xn), and sims )(X,,), simply

written as S(®f)(X,,). Its conditional version,
S5 (X, | 1), can be also defined.

Definition 13.
1,2,...;&; € I") generated by a source X, is trans-
mitted to a destination Y. (§, f) is the capability of Y,
and a string ¢; is the i-th knowledge which is held at Y’
after receiving the strings {@1,...%;}. Inference process
Ip(X,,Q, f,1) is a set of strings{¢; | i =0,1,2,...} such
that

Suppose that the strings z; (i =

SO (X, | ;) < SO(X, | ti_1) + O(1),

Hm SI(x, | ;) = 0(1),

to =1t.
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Definition 14.

the transmitted information amounis T; (by sending the

In the inference process Ip( Xy, 2, f,1),

string ;) and T (by sending the strings @1, 3, ...), are
defined as

T, = SOI(X, | tioq) — SE(X, | 1),

Vs

T= .

i=1

Definition 15. A PTM is a prefiz-free PTM, if pro-
grams on the input tape satisfy the extention of the
Kraft inequality condition[C2]. Prefiz-free system com-
plexity is defined on a prefiz-free universal PTM.

The following theorem shows the relationship between
the transmitted information amount and the prefix-free

conditional system complexity.

\

Theorem 6. Let T be the transmitted information

amounts in the inference process Ip(Xx, 2, f,t). Then,
T = 5@ (X, | 1)+ O(1),

where S(/)(X,, | t) denote the prefix-free variant of
S@N(X, | 1).

Thus, S/ )(X, | t) means the amount of informa-
tion which is incorporated in any sequence generated

by a source X, when the destination has the capability
(€, f) and the knowledge ¢.

5. Incompleteness and practical measurement

Chaitin {C3] has shown that it is impossible to prove
that a particular string z is of a Kolmogorov complex-
ity greater than I(z) + ¢, where c is a constant. From a
practical viewpoint, however, we can measure approx-
imately the complexity (randomness) of a finite string
by measuring the length of a universal coding of the
string[ZL, R].

In a similar manner, we will be able to show that it
is impossible to prove that a particular source X, is
of a system complexity greater than f(n) + ¢, where
f is a function. From a practical viewpoint, however,
we can roughly measure the system complexity of a
source through strings generated by the source, when
the structure of the source is relatively simple and can

be approximately presumed. Then, its system com-

plexity can be measured by measuring the length of
the source parameters which are determined by criteria
such as the Minimum Description Length Criteria[R] or
the Akaike Information Criteria[A].

6. Applications

This section suggests a few representative applications
of this notion of system complexity to the areas of com-
putational complexity, communications, and biological

automata theory.

6.1 Computational complexity

In computational complexity theory, it has been shown
that the expected running times of instances randomly
selected from among several NP-hard problems can be
polynomial under certain conditions[AV, DF]. By con-
trast, the expected running times of instances mali-
ciously selected from among these NP-hard problems
can be much longer than those of the randomly selected
instances. A set of instances selected from a problem
with a distribution is considered to be a source. There-
fore, the system complexity of these probabilistic prob-
lems can be defined, and the system complexity of the
randomly selected problem is the lowest. In contrast,
the system complexity of the maliciously selected prob-
lem is much higher than that of the randomly selected
problem. Consequently, studying the relationship be-
tween the expected running time of a probabilistic prob-
lem and its system complexity is expected to yield many

interesting and practical insights.

6.2 Communications

Recent advances in the communications and computa-
tions technology have led to the proliferation of multi-
media communications. There are many kinds of media:
voice (e.g., telephone), character (e.g., data commu-
nication), and graphic (e.g.; facsimile), among others.
When we make a media-conversion in multi-media com-
munications (e.g., voice to character), can we measure
the amount of information lost through the conversion
from one medium to another? In this section, we show
a way to measure the information amount lost through

the conversions. First, we define the media.
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Definition 16.
medium. We say that a source X € X is on a medium
®, if there is a program p € * such that X = ®(p).

px is a minimum program of a source X on @, if

@(px) =X and l(px) = min{l(p) | ®(p) = X}.

A partial function @ : £* - X is a

Px is transmitted information of a source X on ®, if
px =< Px,¢ > and l(g) = O(1) and
I(px) = min{l(p) | px =< Pp,¢ > and I(q) = O(1)}.

Definition 17. Let X € X and Y € X be sources on
media ® and ¥, respectively. X and Y are equivalent, if
Px and py are equivalent, where px and Py are trans-

mitted information of sources X and Y, respectively.

Definition 18. Let ® and ¥ be media, and a subset
Xs C {X | X is a source on ®}. A function Cs g :
X — Xy is a two-media conversion. A two-media
conversion Cg,y is complete, if Cp ¢ is bijective, and
X € Xp and Y = Cg,4(X) are equivalent for any X €

Xs.

Theorem 7.
version, then, for any X € X3 and ¥ = Cg ¢(X),

S(X) = S(¥) + O(1).

If Cg,¢ is a complete two-media con-

We can say that two-media conversion from & to ¥
loses no information, when the condition of Theorem 7
is satisfied. On the other hand, we can measure the lost
information amount by max{S(X) -~ S(Y) | X € A5
and Y = C3,9(X)}.

6.3 Biological automata theory

A more challenging application to biological automata
theory is discussed. Von Neumann has asked basic con-
ceptual questions regarding biology such as: “How is
self-reproduction possible?”, “What is an organism?”,
“What is its degree of organization?”, “How probable
is evolution?” [N ,C4]. He answered the first question
in [N]. The notion of system complexity can apparently
be used to answer the third question. In addition, we
show one of the directions which might be taken to an-
swer the fourth question. This is represented as a chal-
lenging open problem: is there a principle of increasing
system complexily in some formally defined biological
automata, similar to the principle of increasing entropy

in thermodynamics.

Here, in considering this problem, we treat the biologi-

cal automata as a system which generates a source X,,.

Definition 19.
knowledge, if B satisfies the following conditions.

A PTM B is a system with increasing

(1) The information amount written on the B’s input
tape, B’s knowledge, increases as time passes. More-
over, information once written on the input tape is
never erased. B; is the state of the system B at the
time £. By, (By,) is the state of B at the time ,, when
the state of B at the time t; is B;,, where t; > t,. p,
is the program on the input tape of B;, and Pt (pey) is
that of By,(By,). Upes(pr,)) = f(tz — t1), where f(-)
is increasing. Pi,(p,) is a set {ptz(ph)}.'Given 11,12,
and p;,, for any program p € P, (p:,), Pr{pi,(p:,) =
P} = 1/#{P:,(p:,)}-

(2) B; generates a source X(4).
(3) The complezity of B;, S(B), is defined by S(Xy)-

In the above-mentioned definition, the fact of increasing
knowledge is essential. On the other hand, we measure
the complexity of a system by means of system com-
plexity of the source generated by the system. This
method is based on the idea that the complexity of the
system can be measured by measuring that of the sys-

tem output.

Informal examples of systems with increasing
knowledge.

(1) Living things: The genes of living things correspond
to input tapes. Principally, information written on a
gene which affects the representation of the living thing
increases. The behavior and actions of living things

correspond to the sources generated by these systems.

(2) Social systems (e.g., society, company): The impor-
tant document files, books and data bases possesed by
social systems correspond to input tapes. Principally,
the accumulated information on them for each social
system increase as long as these systems remain active.
Their products and behavior correspond to the sources
generated by these systems.

Proposition 1.  Let B be a system with increasing

knowledge, and 5 > t;.
S(B:,) < E(S(Bi,(By,))) + 0(1),

where E() denotes the expected value.
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Thus, this proposition is considered to be a kind of
general evolutionary' principle. Remember that living
things were born from the sea of chaos, or the mini-
mum system complexity state, and evolved in degree of

organization, or in the level of system complexity.

7. Conclusion

A new notion of complexity, called system complexity,
has been presented to measure the degree of the orga-
nized complexity of a source. We have also shown the
time bounded system complexity and the relationship
with the knowledge complexity. In addition, we have
shown a way to measure the amount of information
transmitted from a source to a destination by means
of conditional system complexity. Incompleteness and
practical measurement have also been discussed. Fi-
nally, applications to computational complexity, com-
munications, and biological automata theory have been

presented.
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