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A 0-1 matrix A is called strongly unimodular if its nonsingular square submatrices are all triangular. We present an
efficient algorithm for linear programming problems in binary variables, when all constraints are of the packing, covering, or

partitioning type, and the constraint matrix is strongly unimodular. The algorithm uses a certain decomposition of strongly
unimodular matrices into their so-called “restricted unimodular” components,

and an efficient optimization algorithm for
linear programs with restricted unimodular constraints.



1 INTRODUCTION

We consider the following optimization problem P :

max wzT

s.t. Az < e (1)
Az > e (2)
Asz = e (3)
z € {0,1}",

where Aj, Az, Az are 0-1 matrices, w € R™, and e denotes a vector of all 1’s of appropriate dimension. Constraints of type

(1), (2) and (3) are called packing, covering and partitioning constraints, respectively.

Packing, covering and partitioning problems arise naturally in combinatorial optimization theory, as well as in a
multitude of real-world applications. “Mixed” formulations of the type described above also allow to take into account a

large variety of nonlinear 0-1 optimization problems. To see this, consider the problem :

max  Fi(z) = E a;z; + Z b Tr, + Z ¢, Tk (4)
€X keP keN .
st. z;€{0,1} forall i€ X ={1,2,..,n}, (5)

where :

by >0 forall k€ P;

¢, <0 forall ke N;

Te= [] = and S(k)C X forall ke PUN.
ieS(k)

The objective function (4) can be linearized as follows. We introduce new 0-1 variables y; associated with the nonlinear
terms T (k € PU N), and constrain them to take the value of the product of the variables in these terms. We then arrive

at the following linear 0-1 program :

max Fy(z,y) =Y awi+ D beyr+ I Cklk , (6)
i€X keP keN '
st. yk—2;<0 forall i€ S(k), keP )
-y + Ez;§|5(k)|—1 forall ke N ‘ (8)
ieS(k) .
z; €{0,1} forall ie X 9
% €{0,1} forall k€ PUN. (10)

If we let now T; = 1 — z; (¢ = 1,...,n) everywhere in (6)—(10), we obtain the program :

max F3(Z,y)=-Y_ aZi+ » bk + D ckbk
iex keP keN

st y+T <1 forall ic S(k), keP

wet >, T>1forall keN
i€S(k)




7; €{0,1} forall 1€ X
yr € {0,1} forall k€ PUN.

This last formulation is of type P.

We call 0-1 matrix strongly unimodular (SU) if all its nonsingular square submatrices are triangular, up to a permutation
of their rows and columns (this is the “Dantzig property” of Balas and Padberg [1]). We gave in a previous paper several
alternative characterizations of SU matrices, notably for constraint matrices arising as explained above from nonlinear
optimization problems ([3]; see also [2]). The purpose of the present note is to complement these results by giving an
efficient optimization algorithm for problem P when the constraints (1), (2), (3) define an SU matrix.

The paper is organized as follows. We survey in Section 2 some results of Yannakakis [5] and Conforti and Rao [2]. In
Section 3, we present a “reduction” procedure, which allows in certain situations to transform problem P into an equivalent
problem of smaller size. Finally, we show in the last Section how this reduction step can be combined with the results

presented in Section 2 in order to solve completely problem P, under the strong unimodularity assumption.

2 SURVEY OF PREVIOUS RESULTS

We start by introducing some useful graph-theoretical interpretation of the concepts discussed in the Introduction.
Our terminology is standard, and follows for instance that of [5]. Since all graphs considered in this paper are bipartite,
we shall often drop the latter qualifier without any risk of confusion. We denote by V(G) (resp. E(G)) the vertex-set
(resp. edge-set) of a graph G. If v € V(G), then N(v) is the neighborhood of v (i.e., the set of vertices adjacent to v,
not including v), and G\v is the subgraph of G induced by V(G)\v. If R and C are disjoint, we denote by K(R,C) the
complete bipartite graph on R U C. A star with center v is a graph K(R,C) for which R = {v} or C = {v}.

Let A be an arbitrary 0-1 matrix. The graph of A is the bipartite graph G(A) with edjacency matriz A : so, we think
of G(A) as having row- and column-vertices, and we put an edge between row-vertex s and column-vertex j if a;=1.1fA
is the constraint matrix of problem P, then each row-vertex of G(A) is either of the packing, covering or partitioning type,
and each column-vertex has some weight w; attached to it. Every feasible solution of P is the incidence vector of some
subset of column-vertices of G. Conversely, we can completely define a problem of type P by simply giving a bipartite
graph G on the vertex-set R U C, together with a partition of R into packing, covering and partitioning vertices, and a
weighting w of the vertices in C. This will be called, for short, the problem associated with G.

A bipartite graph is called restricted unimodular (RU) if all its cycles have length 0 modulo 4. A 0-1 matrix is RU if its
graph is RU. In [5], Yannakakis presents an efficient procedure to solve problem P when the constraint matrix defined by
(1), (2), (3) is RU (actually, he even allows constraints with arbitrary right-hand sides). This result relies on' the proof that
a matrix is RU if and only if it can be constructed from the incidence matrices of bipartite graphs and their transposes,
glued together by some simple operations. Call a function f(n,m) subadditive if f(n,m)+ f(k,1) < f(n+k,m+1), for all
n,m,k,l. Then, Yannakakis proves :

Proposition 1 [5] Suppose that the b-matching problem and the mazimum weight independent set problem can be solved
in time f(n,m) and g(n,m), respectively, on a bipartite graph with n vertices and m edges, where f and g are subadditive

functions. Then, P can be solved for an m x n RU constraint matriz in time O(f(m,n) + g(n,m)).

A bipartite graph is called strongly unimodular (SU) if its adjacency matrix is SU. From the results in [3] and [2], it
follows that a graph is SU if and only if all its cycles of length 2 modulo 4 have at least two chords. In particular, every
RU graph is SU.

Consider now two bipartite graphs Gy, G2 on disjoint vertex-sets. Let v; € V(G1), vz € V(G2) be two distinguished
vertices such that | N(v1) | > 2, | N(vz) | > 2. The composition of G; and G along vy, v; is by definition the graph G

with vertex-set :
V(@) = (V(G1)\m) U (V(G2)\v2)

and with edge-set :
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E(G) = E(G1\v1) U E(G2\vz) U {{u1,u2} | v € N(v;),i=1,2}.

Equivalently, we say that (Gi,Ga) is a decomposition of G, and vy, vy are the markers of the decomposition (see [4], and
Fig. 1; here, and in all other figures in this paper, row-vertices are denoted by o’s and column-vertices by x’s). Observe
that N(v1) U N(vz) induces in G a complete bipartite subgraph whose removal disconnects G into Gy\v; and Ga\vz. Also
if Gy and G; are RU, then their composition is easily seen to be SU. Conversely, Conforti and Rao proved :

Proposition 2 [2] A graph is SU if and only if it is RU, or it is the composition of two SU graphs. If G is SU, then
every mazimal complete bipartite subgraph K(R,C) of G with | R |,| C | > 2 disconnects G into G, and Gz, so that :

(a) R C V(G1),C CV(Gz);

(b) if c € C and r € R, then the subgraphs of G induced by V(G1)U¢ and V(Ga) Ur are SU, and G is (isomorphic to)

the composition of these subgraphs along c and r.

Using Proposition 2, one can naturally associate with every SU graph G a tree-decomposition of G into RU subgraphs
in the following sense. With G, we associate a tree T = (I, F) and a family of RU graphs H;(i € I). To each e = {i,5}
in F correspond two markers ve; € H; and v.; € H;. The original graph G can be recovered from this decomposition by

repeatedly carrying out the following elementary operation, until T is reduced to one vertex :
e Pick a leaf i of T, denote by j its unique neighbor in T, and let e = {i, 7}
o Replace H; by the composition of H; and H; along v, and v,;.
o Replace T by T'\i. |

See [4], [5] for similar tree-decompositions of graphs. Conforti and Rao [2] state in more precise terms an algorithm yielding
such a decomposiﬁon. I G has m tow- and n column- vertices, then the number of subgraphs in the decomposition is

easily proven (by induction) to be at most m + n — 2. Using Yannakakis’ linear time recognition algorithm for RU graphs
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as a subroutine ([5]), the décomposition procedure can be implemented to run in time O((m + n)mn). Our goal here is to

indicate how this decomposition can be used to solve efficiently problem P when the constraint-matrix is SU.

3 THE REDUCTION STEP

The main step of our procedure consists in solving a problem of type P, where the associated graph G is the composition
of two graphs G and Gy, and either Gy and G is RU. We describe now an efficient way to carry out this step.

Let v; € V(G1) and v; € V(G3) be the markers of the decomposition (G1,G2). We assume without loss of generality
that the vertices in N(v;) are column-vertices of G. Accordingly, vy and N(v;) will henceforth be considered row-vertices
of G’l, and vz will be considered a column-vertex of Gz. If all vertices of N(v,) are packing in G, then we define v; to be
packing in G4y; if they are all covering in G, then v; is covering in Gy; otherwise, vy is partitioning in G;. The weight of
v in Gy is set to some arbitrary value «, which can temporarily be thought of as being zero : the specific value of o will
only turn out to be relevant if G; is RU, and will be redefined in that case (see Section 3.2). All vertices in V(G})\v; and
V(G2)\v; retain the same weight or type (i.e., packing, covering or partitioning) as in G.

3.1 G, is RU.

Let N(v2) = {p1,...,Ps,1,...,Ct}, Where py,...,p, are either packing or partitioning vertices of G, and ¢y, ...,¢; are
covering vertices of G. Denote by Py the problem associated with G2\v; (i.e., the problem obtained by restricting P to the
rows and columns associated with vertices of G\vz), and denote by wp the optimal value of Py. Similarly, let P; be the

problem associated with G;\ N, where :
N=vUN(@u)UN(p)U---UN(p,),

and let w; be the optimal value of P;. Intuitively, Py -and Py are derived from the problem associated with G by fixing to

0 or to 1 the variable corresponding to v,.
Observe that both G2\v; and G3\N are RU. Hence, by Proposition 1, wy and w; can be computed efficiently. If G2\N

has no vertices, then wy is simply set to zero. In case Py (resp. Py) is infeasible, we set wo (tesp. w;) to —oco. If both Fy
and P, are infeasible, then P is infeasible, and we are done.

Now, we consider the graph G* with vertex-set
V(@) =V(G1) U {z,y1},
(where z,y,r are new vertices), and with edge-set

E(G*) = E(Gl) y {{yyvl}v{z’ T}, {y,r}}

(see Fig. 2). We define a problem P* on G*, in the following way :
(a) all vertices in V(G;)\v1 have the same weights or types as in G;
(b) y has weight wo;
(c) = has weight wy;
(d) 7 is a partitioning vertex.

Proposition 3 P and P* have the same optimal value.

Proof.

1. Consider a feasible solution of P* with value w*, and the corresponding set S of column-vertices of G*. Since r is a
partitioning vertex of G*, exactly one of z or y is in S. Assume first that € S, and let S; be an optimal solution of P;.
Then, (5\z) U S is a feasible solution of P, with value w*. Similarly, if y € S, let Sp be an optimal solution of Py. Then,
(S\¥) U S, is feasible for P, and has value w*. So, we can conclude at this point that the optimal value of P is always at
least at large as the optimal value of P*.

2. Conversely, consider now a feasible solution of P with value w, and the corresponding set S of column-vertices of G.

Let Z = S N V(G2). Assume first that S contains no vertex from N{v1). Then, it is easy to see that Z defines a feasible

I
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solution of Py. Hence, the total weight of Z is at most wo. It follows that (S N'V(Gy1)) U {y} is a feasible solution of P*
with value at least w. On the other hand, if § intersects N(vy), then Z is a feasible solution of P, and hence has weight
at most wy. So, in that case, (§ NV(Gy))U {z} is a feasible solution of P* with value at least w. Thus, the optimal value
of P* is at least the optimal value of P, and the proof is complete. O

One should observe at this point that, if Gy is RU, then so is G*. Hence, in that case, P* can be solved efficiently, and

Proposition 3 provides a complete solution to problem P.

3.2 G,is RU.

In this case, we denote by Py the restriction of P to G1\v;\/N(v1), and by wp the optimal value of Py. Observe that wo
is the best value that can be achieved for Gy, under the restriction that all variables corresponding to vertices in N(v;) be
fixed at 0. Similarly, we let P; be the problem associated with Gy, and w; be its optimal value. As before, wo and w; can
be computed efficiently, since both Gy and Gy\v1\N(v,) are RU. If G1\v1\N(v1) has no vertices, then wo is set to zero. If
P, (tesp. Py) is infeasible, then wg (resp. w;) is set to —oco.

Consider now the graph G* defined by :
V(G*) =V(Gz) U {z,r},
(where z,r are new vertices), and
E(G™) = E(G2) U {{r,m},{z,7}}

(see Fig. 3). We associate with G* the problem P* in which :
(a) all vertices of V(Gz)\v, have the same weights or types as in G;
(b) v has weight w;
(c) = has weight wo;
(d) r is a partitioning vertex.

Proposition 4 P and P* have the same optimal value.
Proof. The proof is similar to that of Proposition 3, and is left to the reader. O

Notice that, just as in the previous case, G* is RU if G is RU, and P* can then be solved by Yannakakis’ procedure.

4 THE OPTIMIZATION ALGORITHM

An efficient procedure to solve problem P on an SU graph G can now be inferred from the results stated above. Assume
that a tree-decomposition of G into RU graphs is available. Say T' = (I, F), H(i € I) is such a decomposition, with markers
ve; € H; and v ; € H; for each edge e = {i,5} in F (see Section 2). All vertices in U;e; V() (i-e., including the markers)
have some weights or types, as defined at the beginning of Section 3. Then, the following algorithm yields an optimal

solution of problem P.

SU ALGORITHM

Step 1. If T contains at least two vertices, then pick a leaf i of T','denote by j its unique neighbor and let e = {7, j}.
Else, go to Step 4. )

Step 2. If ve,; is a column-vertex, then let Gy = H;,Ga = Hi,v1 = v,5,v3 = ¥, ; let G* be the graph obtained by
applying to (G1,Gz2) the reduction step described in Section 3.1 ; let H; « G*. Else, if v.; is a row-vertex, then let
G1 = H;,G3 = Hj,v1 = ve4,v2 = ¥, ; let G* be the graph obtained by applying to (G1,Gy) the reduction step described
in Section 3.2 ; let H; «— G*.

Step 3. Replace T by T\i, and go to Step 1.




Step 4. Let ¢ be the unique vertex of T, solve the problem associated with H;, return its optimal solution, and stop.
Let us illustrate the use of the SU algorithm on a small example.

Example. Problem P is associated as follows with the SU graph G represented in Fig. 4 :

(1) vertices 1, 6, 7 are covering, vertex 8 is partitioning;

(ii) the weight of the remaining vertices are : wy = —5, w5 = 2, wy = 2,ws = 3,wg = —4,wyp = —3.

A tree-decomposition T' = ({¢1,23,13}, F) of G into H,, Hz, Hj is indicated in Fig. 5. The composition of Hy and H, is
to be taken along v;, v3; the composition of Hy and Hj is along vs,v4. Observe that Hy, Hy and Hj are RU. In accordance
with the rules described in Section 3, v; is a partitioning vertex, vs is a covering vertex, and v3,v4 have arbitrary weights.

We start the execution of the SU algorithm by picking first leaf t5 of 7. The optimal value of problem Py (resp. P;)
associated with H3\vg (resp. H3\{6,7,v4}) is wo = -2 (tesp. wy = 3). The graph H; is updated as indicated in Fig. 6,
where 7 is a partitioning vertex, y has weight -2 and « has weight 3.

We pick next leaf t; of T. Since Hy\{9,10, v} is empty, we let wp = 0. The optimal value of problem P; defined on
H; is w; = -3. Two new vertices are added to H, as shown in Fig. 7 : s is a partitioning vertex and z has weight 0. Also,
the weight of v, (which has left so far undefined) is set to -3.

The optimal solution of Hj is $* = {3,4,,v;}, and has weight w = 4. The corresponding optimal solution of P on G
is easily traced back : it is given by S = {3,4,5,10}. O

Proposition 5 Suppose that problem P can be solved in time k(m,n) for an m x n RU constraint matriz, where h is a

subadditive function. Then, the SU algorithm solves P in time O(h(m,n)) for an m x n SU constraint matriz.
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Proof.

1. Observe that, whenever the SU algorithm picks a leaf 7 of T in Step 1, the associated graph H is RU, and contains
exactly one marker, namely v; : this is easily verified to hold at the first iteration of Step 1 (e.g. by induction on the
number of vertices of T), and to remain true throughout the execution of the algorithm. Hence, the problems Py and Py
to be solved in Step 2 of the algorithm are always associated with RU graphs, for which all relevant weights are precisely
known (and are independent of the arbitrary weights associated with some markers at the beginning of the algorithm).
The validity of the whole procedure follows then from Propositions 3 and 4. Notice that an optimal solution to P can be
reconstructed from the solution returned by the algorithm (as in the proof of Proposition 3).

2. So. P is solved by solving at most two RU subproblems for each subgraph in the tree-decomposition, and the
complexity of the SU algorithm is of the order of Yicr h(mi,n:), where m; (resp. n;) is the number of row-vertices (resp.
column-vertices) of the graph H; considered in Step 2 of the algorithm. Let now I=JUK, where i € J if H; is a star in
the original decomposition T = (I, F) of G, and K = I\J.

Claim 1. Yiey h(mi,ni) = O(m + n).
Notice that, if ¢ € J, i.e., H; is a star, then H; contains only one marker, namely its center (since a marker always has
at least two neighbors). So, if i € J, then i is a leaf of T.- It follows that, when 4 is eventually picked in Step 1 of the
algorithm, Hj is still as in. the original decomposition, i.e. H; is still a star. Now, when the underlying graph is a star,
problem P can trivially be solved in linear time. Hence, the subgraphs H; with i € J contribute for O(Y ;¢ h(mi + n:))
time to the total complexity of the algorithm. Since each star has only one marker, and | J1<|I|£m+n-2,it follows
that :
Eh(m;, n;) = O(E(m; +m;)) = O(m +n).
ieJ i€J
Claim 2. ;ex h(mi,n;) = O(h(m,n)).
Let k = | K |. We first show that k < min(m,n). Indeed, being a tree on k vertices, T\J has k — 1 edges. So, U;ex V(Hi:
contains 2(k — 1) markers, k — 1 of which are row-vertices. Therefore, the total number of row-vertices in U;ex V(H)
is at most m + k — 1. On the other hand, for all i € K, H; has at least two row-vertices (else, H; would be a star). It
follows that 2k < m + k — 1, and hence £ < m. A similar argument shows that k < n. The number of new vertices (of
type z,y,7) added to the H;’s during the reduction steps performed by the a.]gorithm is clearly at most linear in k. Hence,
Yiex mi = O(m+ k)= O(m), Tiexni= O(n+ k)= 0(n), and :

Z h(mi,n;) = h(z m;, E n;) = O(h(m,n)).

i€K €K i€K
From Claim 1 and Claim 2 (and under the harmless assumption that m+n = Ok(h(m, n)), we conclude that the overall
complexity of the SU algorithm is O(k(m,n)). O
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