7 oo T Y X A 2-2
(1988 7 25)

FHZ 77 CTRRLEZRDLTIVTY XA

sk iR B RER

WAL K% ¥ B ELTFH

ARETIIFHRERNS T 7 THELEEZRDIHPEDORWTI NIV X252 5. FE
75 7GEGLED2EsEtBEZ SN LI, RKTIN TV XA, 2 skt ERCLED
MELBOEABOBRAEEZ KD, RICHRLZEEZEEIIKRDS. 71T XADGEER
130(nlogn)TH 3. 2Tl 77 7GHDRBTH 5.

Algorithms for Finding Internally Disjoint Paths
in Planar Graphs

Hitoshi SUZUKI, Takehiro AKAMA, and Takao NISHIZEKI

Department of Electrical Communications, Faculty of Engineering
Tohoku University, Sendai 980, Japan

This paper gives an efficient algorithm for finding internally disjoint paths in planar
undirected graphs. Given a planar graph G together with two specified vertices s and ¢,
the algorithm first determines the maximum number of internally disjoint paths between
s and ¢t in G. Then the algorithm actually finds these paths by using divide-and-conquer
method. The algorithm runs in O(n logn) time, where n is the number of verticesin G.

1)

1. Introduction

Let s and t be two specified vertices in a graph G. Paths connecting s and ¢ are defined to be internally
disjoint if they have only vertices s and t in common. One can find a maximum number of internally disjoint
paths in a general graph G in O(MIN{kym, m+/n}) time by solving the maximum flow problem for a graph
obtained from G [ET], where m is the number of edges in G, n is the number of vertices, and ks is the
maximum number of internally disjoint paths.

In this paper we present an efficient algorithm for finding a maximum number of internally disjoint paths
in a planar undirected graph G. The algorithm runs in O(nlog n) time. We do not use any flow algorithm,
but use the divide-and-conquer method based on properties of planar graphs.

In section 2 we outline an O(nlog n) algorithm which determines the maximum number kj, of internally
disjoint paths. Then in section 3, using a divide-and-conquer strategy, we design an O(nlogn) algorithm
which actually find k disjoint paths for any k < kyy.

2. Determining the maximum number

Reif [Rei] and Hassin and Johnson [HJ] have given O('nlog2 n) algorithms which find a maximum s-¢
(edge-)cut and a maximum flow in an undirected planar graph. We employ their ideas, but need to introduce
several new ideas.

Let G = (V, E) be an undirected simple planar graph with vertex set V and edge set E. We denote by
V(@) the vertex set of G, and by E(G) the edge set of G. Let n be the number of vertices in G, that is,
n=|V|. We assume that G is connected and embedded in the plane R2. The image of G on R? is denoted by
Image(G). A face of planar graph G is a connected component of R?> — Image(G). Denote by V(f) the
set of vertices on the boundary of a face f, and by I'(G) the set of faces of G. We say that a vertex set
X C V separates two vertices s and t or X is an s-t separating set if s and ¢ are in different components of
G — X. The following theorem, due to Menger, is well-known.

THEOREM 1 [Men]. Let s and ¢t be two non-adjacent vertices of an undirected graph G. Then G has k
internally disjoint paths if and only if there is no s-t separating set X with |X| < k. |

We may assume without loss of generality that ¢ lies on the outer face boundary of G. Furthermore we
may assume that s and ¢ are not adjacent. If s and ¢ are adjacent, then a maximum number of internally
disjoint paths in G can be constructed from a maximum number of internally disjoint paths in graph
G — {(s,?)} by adding the path of a single edge (s,t).

Let I'(G) be the set of faces of G. We construct from G a new planar graph G* = (V*, E*) as follows
(See Fig. 1):

(1) for each face f € I'(G), introduce a new vertex f* and embed f* in face f; and

(2) join vertex f* with every vertex in V().
Thus V* = V(@ UT*(Q) and E* = {(f*v)|[f* € T*(@),v € V(f)}, where T* Q@) = {f*|f e T(&}.
Note that none of the edges in G remains in G* and that G* is not a dual of G unlike in [Rei] and [HJ].

We say that a cycle (i.e. a closed walk) C in G* separates two vertices s,t € V(G*) if Image(C)
separates two points s and ¢ in B2, that is, s and t are in different connected components of B2 — I'mage(C).
We often call C an s-t separating cycle. We denote by leng(W) the length (i.e. the number of edges) of a
walk W in a graph G*. Since G* is a bipartite graph, walks connecting v,v' € V(G), walks connecting
. " € T*(@), and cycles all have even lengths in G*. From Menger’s theorem one can easily derive the
following lemma.

€2z)

Fig. 1 @G, G' and an s-t separating cycle C in G*.

LEMMA 1. Let k > 2. A planar graph G has k internally disjoint s-¢ paths if and only if all the s-t
separating cycles in G* have lengths at least 2 k.
Proor. By Theorem 1 it suffices to show that a vertex set V C V(&) with |X| < k separates s and ¢ if
and only if G* has a cycle C of leng(C) < 2k separating s and ¢.
If: Suppose that G* has a cycle C such that leng(C) < 2k separating s and t. We may assume that C is
a simple cycle. Then |[V(C) NV(Q)| = leng(C) /2 < k, and V(C) NV (G) is the vertex set which separate
sandtin G.
Only if: Suppose that a vertex set X C V(G) with |X| < k separates s and ¢ in G. We may assume that
X is minimal among these sets. There exists a closed curve J C R? such that:
(1) J separates s and ¢t on R?;
2) JNImage(G) = Image(X); and
(3) Let vo,v1,...,vjx}-1 be the vertices in X, and assume that the vertices appear in this order clockwise
going on J. Then for any 1 < 4 < [X|—1, v; and viy1 lie on the boundary of the same face f; of G and
the interval of J between v; and v;4q is in f;.
Clearly, the cycle C = wo, f§,v1, f{, ..., vo separates s and t, and leng(C) = 2|X| < 2k. Q.E.D.

Thus it suffices to find a shortest s-t separating cycle in G*. We now use Reif’s idea to efficiently find
such a cycle in a planar graph. Find a shortest s-t paths P, in G*, and let Q = P,; — {s,t}. Construct from
G* — {s,t} a new planar graph G%,,. G, is generated by slitting apart the path (into two paths Q' and Q",
duplicating the vertices and edges of Q as follows. Each vertex v on Q is replaced by new vertices v/ and v".
Any edge (v, w) that is not in Q but is incident with vertex v in Q is replaced by (v, w) if (v, w) is to the
left of Q in G*, and by (v",w) if (v,w) is to the right of Q in G*. Once G%,, is generated, it is searched as
follows. Let v be a midpoint of the original path Q. A shortest path computation in Gy is performed using
v’ as the source and v” as the destination. The shortest v'-v" path P, corresponds to the shortest s-t separating
cycle in G* containing v. The graph G7;, is split into two subgraphs along P, including vertices and edges on
P, in both subgraphs. Our algorithm recurses on each half. Among the r = |V(Q)| paths so identified, the
shortest path will correspond to the shortest separating cycle. The work performed across each level of
recursion is dominated by the shortest path computation, which are O(n) time since the breadth-first search
simply suffices in our case. The time to handle all levels of recursion is O(nlogm), since there are

€3>

O(log r) = O(log n) levels of recursion. However we need two new ideas here to make the recursive
algorithm run actually in O(nlogn) time. If all the paths P, were listed, then the algorithm would require
O(rn) = O(n?) time. Instead our algorithm finds a forest F' in Gy, containing path P, for every vertex v on
Q. At each level of recursion the breadth-first search is performed in each of the subgraphs of Gy, bounded
by the forest F' obtained at the preceding level, and hence spends O(n) time. Once such a forest F is found,
one can find the distance between v’ and v” for all v on Q total in O(n) time by using a linear algorithm to
solve “the nearest common ancestor problem for trees” in [GT]. Thus we have:

THEOREM 2. The maximum number kj; of internally vertex-disjoint s-t paths in a planar graph G can be
determined in O(nlog n) time. |

3. Finding disjoint paths
We now outline an algorithm PATH for finding k internally disjoint s-¢ paths in G for any positive integer
k< k. .

StEP 1: Find a vertex set X C V(G) such that X separates s and ¢ and |X| = k; {if there is no such a
vertex set X C V, then one can reduce GG to a smaller graph having such a vertex set X by deleting
“redundant” vertices and collapsing “redundant” faces.}

StEP 2: Split @ into two graphs, the “inside” containing s and the “outside” containing ¢ (see Fig. 2);

(b) (@

Fig. 2 Graph G and its split graphs G1 and ;.

€4)

StEP 3: Construct a new planar graph Gy from the “inside” by adding new vertex t' and joining ¢’ with
every vertex in X. Similarly construct G from the “outside” by adding a new vertex s’ and joining s’ with
every vertex in X. We call G; and G, above split graphs of G; and

StEP 4: Find k internally disjoint s-' paths in Gy and k internally disjoint s'-t paths in G by recursively
applying Steps 1, 2, and 3 above. Construct k internally disjoint s-t paths by combining these two sets of
paths.)

One can prove the following two lemmas.

LEMMA 2. Let v € V(G*) — {s,t} be any vertex which is adjacent with neither s nor t. Let C be a
shortest s-t separating cycle in G* containing v. Let G} be the graph obtained from G* by contracting all
edges incident with v, and let C' be the cycle in G corresponding to C. Then C' is a shortest s-t separating
cycle in G containing v, and leng(C') = leng(C) — 2.

Proor. Since neither s nor ¢ is identified with v in G%, cycle C’ of G} separates s and ¢.

Since C is a shortest cycle, C passes through vertex v exactly once. The two edges on C incident with v
are contracted in G7%. Therefore leng(C) = leng(C’) + 2.

We next show that leng(C.) > leng(C') for any shortest s-t separating cycle C, in G} which contains
v. By adding to C!, two edges which were incident with v in G*, one can construct an s-t separating cycle C,
in G* which contains v is induced. Therefore

leng(C,) = leng(Cl) + 2.

On the other hand, by the assumption
leng(C,) > leng(C).

Therefore leng(C,) > leng(C"). QED.

LEmMA 3. Assume that a vertex v € V(G*) — {s,t} is adjacent with neither s nor ¢, that every cycle in
G* containing v and separating s and t has length> 2k-+ 2, and that G’ is obtained from G by applying the
following operation (1) or (2):

(1) if v € V(G), then delete v from G; or
) if v= f* e I'*(Q), then contract all vertices in V(f) into a single vertex v.
Then G has k internally disjoint s-¢ paths if and only if G’ has k internally disjoint s-t paths.

Proor. Note that both (1) and (2) for G correspond to an operation for G* to contract all edges incident
with v. Suppose that G has k internally disjoint s-t paths. Then by Lemma 1, every s-t separating cycle in G*
has length> 2k. Let C be a shortest s-t separating cycle in G'*. If C contains v, then by Lemma 2
leng(C) > 2k. If C does not contain v, then C is a separating cycle also in G*, and hence has length > 2k.
Therefore by Lemma 1. G’ has k internally disjoint s-¢t paths.

For the case in which operation (1) is applied, k internally disjoint s-t paths in G’ are internally disjoint
also in G. On the other hand, for the case operation (2) is applied, & internally disjoint paths in G can be
obtained from those in G’ by adding some edges in E(f). Q.ED.

As known from Lemmas 2 and 3, once one finds a shortest separating cycle C in G* containing a vertex
v, one can repeat the contraction of all edges incident with v until either the length of C becomes 2k or the
distance between s and ¢ in G* becomes at most four, with preserving k internally disjoint s-t paths in G. For
the case that leng(C) becomes 2k, G* has a separating set X with |X| = &, and hence we can apply to G the
divide-and-conquer strategy illustrated in Fig. 2. For the case that the distance beween s and t in G* becomes

(5)

2 or 4, we can find internally disjoint paths in O(n) time by using a simple method. The details will be
presented later.

In order to balance the “sizes” of split graphs G; and G2, we choose as v a midpoint on a shortest s-t
path P, in G*. Then both the distance between s and t' in G} and the distance between s’ and ¢ in G are at
most about one half of the distance between s and t in G*. Repeating this operation, we split G into several
graphs for which the distance is 2 or 4. Note that the distance between s and t in G* is even, and that if the
distance is at most 4, then the distances for split graphs do not necessarily decrease.

The detail of the algorithm PATH is as follows.

procedure PATH(G, s, t);
begin
construct G* from G,
find a shortest s-t path P, in G*;
if leng(P,;) > 4 then
begin
find a shortest s-¢ separating cycle C which contains a midpoint v on Py;;
while leng(P.;) > 4 and leng(C) > 2k do
contract all edges incident with v in G*, and update G, P, and C; {see Lemmas 2 and 3}
end;
if leng(Py) < 4 then
find k internally disjoint s-t paths in G {the detail will be given later}
else {leng(Py) > 4 and leng(C) = 2k}
begin
split G into G and G2;
PATH(G4, s,t);
PATH(G-, ¢',1);
construct k internally disjoint s-t paths in G' by concatenating s-t' paths in G; and §'-t paths in
G2
end
end;

Since the paths obtained by procedure PATH may pass through vertices which are surrogates for collapsed
faces, they are not necessarily complete s-¢ paths in the original graph G. However, one can immediately
construct k internally disjoint paths in G by adding some edges on the boundary of collapsed faces.

Algorithm for the case leng(Py) < 4.

We next show how to find & internally disjoint s-¢ paths for the case leng(P:) < 4. First consider the
case in which leng(Py) = 2. In this case one may assume that s and ¢ lic on the outer face boundary. Then
one can find k internally disjoint paths in G simply by the “uppermost path algorithm” [FF]. That is, find the
uppermost path P in @G, ie., the clockwise s-t path in the outer face boundary, delete the vertices in
V(P) — {s,t} from G, and let G be the resulting graph. Repeating this operation k times, one can find &
paths in O(n) time.

Next consider the case in which leng(Py) = 4. In this case exactly one vertex v of G lies on path
Py — {s,t} in G*. Therefore one may assume that ¢t and v lie on the outer face boundary and v and s lie on

{6)

an inner face boundary. Then one may further assume that one of the four s-t paths Py, P,, P; and Py drawn
by thick lines in Fig. 3 is included in the k disjoint paths. Each P; is a concatination of an s-v path in the
inner face boundary and a v-t path in the outer boundary. For some i, G — (V(F) — {s,t}) has k—1
internally disjoint s-t paths. These k — 1 paths can be found by the uppermost path algorithm since s and ¢ lie
on the new outer boundary. Thus k internally disjoint paths in G can be found in O(n) time.

P,

Fig. 3 Four s-t paths Py, P;, P3 and P;.

Since the description of PATH has been completed, we next analyze the execution time T'(m,r) of
PATH(G, s,t), where m is the number of edges in G and r is the distance between s and ¢ in G*. A shortest
separating cycle containing v can be found in O(m) time simply by the breadth-first search for G%;,. The
time needed to update G, Py, and C when deleting redundant vertices and collapsing redundant faces is
proportional to the number of deleted or contracted edges. Therefore the execution time of PATH, excluding
the time required by the recursive calls, is O(m). Thus, if » > 4, then

T(m,r) <T(m1,m1) + T(mz,m2) + O(m),

where m; and m;, are the number of edges in Gi and G, respectively, and r, and r, .are the distance between
s and ¢t in GT and G, respectively. As shown above, T'(m,4),T(m,2) = O(m). Furthermore we claim

@ mi+my <m+2k;

(b) 7k/2 < m; and

© r,m2 <1/2+2.
Clearly (a) and (c) hold. Let ' be the length of a shortest s-¢ path in @, then v’k < m since G has k
internally disjoint paths. Furthermore r/2 < . Hence (b) holds. Solving the recursion above by using (a),
(b), and (c), we bave T'(m,r) = O(mlog r) = O(nlog n).

€7y

On the other hand, a standard technique known in network flow theory can reduce the problem for finding
k internally vertex-disjoint s-t paths in an undirected graph to the problem for finding a flow of value k in a
directed graph. Therefore one can find & internally disjoint paths in O(kn) time by using a flow algorithm.
Thus we can conclude:

THEOREM 3. Given a planar graph G with two specified vertices s and t, a set of k internally
vertex-disjoint s-t paths can be found in O(MIN {kn, nlog n}) time for any positive integer k < ky, where
kys is the maximum number of paths. |

Acknowledgment
We would like to thank Professor N. Saito for many stimulating discussions.

[ET]

[FF]

[GT]

(HJ]

[Men]
[Rei]

Rererences

S. Even and R. E. Tarjan, Network flow and testing graph connectivity, SIAM J. Compt. 4, 4,
pp. 507-518 (1975).

L. R. Ford and D. R. Fulkerson, Maximal flow through a network, Canad. J. Math., 8, pp.399-404
(1956).

H. N. Gabow and R. E. Tarjan, A linear-time algorithm for a special case of disjoint set union,
Journal of Computer and System Sciences, 30, pp. 209-221 (1985).

R. Hassin and D. B. Johnson, An O(nlog? n) algorithm for maximum flow in undirected planar
networks, STAM J. Compt., 14, pp. 612-624 (1985).

K. Menger, Zur allgemeinen Kurventheorie, Fund. Math.10, pp. 95-115 (1927).

J. H. Reif, Minimum s-t cut of a planar undirected network in O(nlogz(n)) time, SIAM J. on
Compt., 12, pp.71-81 (1981).

€8

