7 v I Yy X A 2-1
(1988 17 25)

BEADO LIBREAEUHEICT T 7L TY X A

WA — 7 —*, JNEERFIE*, LT, AFiE
UMK T BN TR

B IRREERHFEEL v 5 —

AEBL T, FHELOnBOE*EHTEUT AHET, FELERLE O Euclid EREOBM. T 2D
LL VA DBRANCIE B XD EMEREROSMEEEX 5, T OMEOEEMER. L EHUORK
BRODLEMATIZIEY O3 THAET LRBEH O LM, ThIVEBETEZ 2L ) »PiEbdo
TVnhd ol KEX T, L1 / V& CHICESROBNE & 2B413 L T, O(nlSleg2n) OFHO T
NI X L%E5E2, SHREAREATSLON, L1 / VARBEOER T EEoKMTED LN
BEEIH LT, OMDDEROT ATV AL E52 2, —F, REGEAEFVOTC, T OMEDE
EEMEOTEY Qnlogn) TH2 T LA FRT, FRXTHLBLT VT X sk, L EUMELERD
REHEETO (EAE) PN b (median belt) # BERT T 5,

Algorithms for L Linear Approximation of Points

Peter YAMAMOTO*, Kenji KATO*, Keiko IMATf and Hiroshi IMAT*

*Department of Computer Science and Communication Engineering
Kyushu University, Fukuoka 812, Japan

+Information Science Center, Kyushu Institute of Technology
Hzuka, Fukuoka 820, Japan

This paper presents algorithms for approximating a set of n points by a linear function, or a line, that
minimizes the L; norm of orthogonal distances. The algorithmic complexity of the problem appears not
to have been iniiestigated, although O(n3) naive algorithms can be easily obtained based on some simple
characteristics of optimal L; solutions. In this paper, an O(nl-5log2n) algorithm is presented for the
unweighted orthogonal problem, and an O(n2) algorithm is presented for the weighted problem. An Q(n
log n) lower bound for the orthogonal L; problem is shown under a certain model of computation. Also,
the complexity of solving the orthogonal Li problem is related to the construction of the &-belt of an
arrangement of lines.
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1. Introduction

Approximating a set of n points in the plane by a lin-
ear function, or a line, called the line-fitting problem, is
a fundamental problem in scientific computing encoun-
tered in many fields, including statistics, econometrics,
location theory, and signal-processing. Recently, the
line-fitting problem and its variations have been con-
sidered from an algorithmic point of view in those ar-
eas. However, the algorithms presented are, for the most
part, brute force and involve enumeration of all pos-
sible candidate solutions. Solutions to some of these
problems, on the other hand, have inherent geometrical
properties which have generated interest from the area
of discrete and computational geometry.

The nature of the problem depends on three fac-
tors: the distance function used to measure the distance
from a point to a line, the norm of the distance function
used, and whether the distances are weighted by asso-
ciating a weight to each point. The unweighted case
corresponds to the situation where all weights are equal
to one. Vertical or orthogonal distances are commonly
used as the distance function (see Figure 1.1), although
other measures, such as the rectangular distance, are
also of interest.

The most frequently used norm is the Lz norm
which may be efliciently solved by the least squares
method for both vertical and horizontal distances. How-
ever, the L, norm is not always the most appropriate
criteria for a “best” fit. The two most popular alter-
natives are the L and the Lo (or Chebyshev) norms;
however, their use in practice has been limited due to
the lack of efficient algorithms (see the conclusion for a
brief historical note). The full paper provides more de-
tails and references concerning the applicability of the
above three approaches to particular problems.

Megiddo [12] notes that by applying his multidi-
mensional search technique to the vertical Lo, problem,
formulated as a linear programming problem, an exact
solution may be found in linear time. Recently, Lee and
‘Wau [10] provide optimal and efficient algorithms for the
orthogonal L., problem and some of its variations.

Optimal solutions to both the vertical and orthog-
onal L; problems are known in statistics as robust esti-
mators: the solutions are not easily influenced (relative
to solutions to the Ly and Lo, problems) by outliers, or
noise, in the data (see Figure 1.2). For that reason,
in applications in which the data is subject to error, for
example, signal processing, the L; norms may be much
more preferable than the more popular Ly norms. Also,
from the viewpoint of location problems, the orthogonal
L; norm measures the total Euclidean distance of the
points from the line.

This paper is concerned with the L; linear approx-
imation problems in the plane. The problems may be
stated as follows.

Problem 1.1. The Vertical L; Problem.
Given a set, S, of n points, p; = (z;,y;) (i=1,...,n), in
the (z,y)-plane, with corresponding weights, w;, find a
pair of values (a*, b*), for the parameters a and b, which
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Figure 1.1. Vertical, d,, and orthogonal, d,,distances.
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Figure 1.2. Effect of outliers on optimal
solutions (vertical Ly norm).

solves the following mini-sum problem:

n
r:l’iglz w; |yi — (az;i + )|

i=1

Problem 1.2. The Orthogonal L; Problem.
Given a set, S, of n points, p; = (z;,4:) i =1,...,n),
in the (z, y)-plane, with corresponding weights, w;, find
a pair of values (a*,b*), for the parameters a and b,
which solves the following mini-sum problem:

d w; lyi — (az; + b)]

=1 'a2+1

The complexity of the vertical and orthogonal Ly
problems appears not to have been investigated from an
algorithmic point of view before our work in [8]. The
problems differ only by the divisor v/a? + 1 which con-
verts the vertical distance into the orthogonal distance;
however, the divisor is an important factor in determin-
ing the complexity of the problems. The vertical L;
norm is a convex function, whereas, due to the divisor,
the orthogonal L; norm is not convex. Based on the
convexity of the vertical L; norm, this paper presents a
linear time algorithm for the weighted vertical L, prob-
lem; however, the results in this paper indicate that al-
gorithms for the orthogonal L; problems lie in a different

min
a,b




complexity class.

The unweighted vertical L; problem may be solved
by general numerical approximation methods, such as
the method of descent, or it may be formulated as a
linear programming problem in higher dimensions [2].
[8] notes an O(n3) naive algorithm for finding an exact
solution to the weighted vertical L; problem based on
characteristic properties of optimal solutions.

In the case of the unweighted orthogonal L; prob-
lem, [15] presents a numerical algorithm which corre-
sponds to a concave quadratic programming algorithm.
[13] presents an O(n?) naive algorithm for finding an
exact solution to the weighted orthogonal L; problem
based on characteristic properties of optimal solutions.

Efficient algorithms for these problems have been
proposed by Yamamoto, Kato, Imai and Imai [17].
Specifically, that paper gives an O(n)-time algorithm for
the (weighted) vertical L; problem, using the so-called
pruning technique, an O(n1-%log? n)-time algorithm for
the unweighted orthogonal L; problem, based on an al-
gorithm for constructing the median belt, and an O(n?)-
time algorithm for the weighted orthogonal L; problem,
by means of the topological sweep of [5]. This paper
describes the algorithms for the orthogonal problem as
well as the lower bound proof to that problem in detail,
following [17].

2. Preliminaries

This section defines the basic notation and concepts
used in this paper. All of the algorithms make use of
a point-line, or dual, transformation which is defined
below. Some general notation is also introduced.

The transformation from the original, or (z,y)-,
plane into the dual plane may be performed as fol-
lows (see Figure 2.1). The point (z’,y’) and the line
y = d'z + ¥ in the (z,y)-plane are mapped to the line
b= —z'a+y and the point (a’, '), respectively, in the
(a, b)-plane.

The following notation is used for describing the
relative position of a point with respect to a line. A
point (z’,y’) lies above, on, or below, the line y = a’z+b’
if y' — (a’2’ + V') is, respectively, greater than, equal to,
or less than, zero. If the line is defined by z = a’ (a
vertical line), then (z’,y’) lies to the right of, on, or
to the left of, the line z = a' if 2’ — a’ is, respectively,
greater than, equal to, or less than, zero. The definitions
also hold for a point (a’,’) and a line (b =z'a + y') in
the (a,b)-plane. The terms right and left are also used
when considering the one-dimensional space defined by
the points on a line (the line, vertical or not, can be
thought of as a horizontal axis).

The duality preserves the vertical distance (hence,
also the above-below) and incidence relations between
points and lines. A vertical line in one plane is concep-
tually mapped to a point at infinity in the other plane.

The value of the orthogonal L1 norm will be referred
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Figure 2.1. Primal-Dual Transformation
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The absolute value signs may be eliminated by consid-
ering the value of the functions for fixed values of the
parameters a and b. For fixed a and b, define sets I4(a, b)
and Ip(a,b) of indices by:
Ip(a,b)={i|lyi>azi +b (i=1,...,n)}
and
Ig(a,b)={ilyi<az;+b (i=1,...,n)}.
Note that the above notation may be interpreted as the
set of indices of data points (z;,y;) above and below a
line defined by (a,d) in the (z, y)-plane, or as the corre-
sponding set of indices of data lines defined by (—=z;, ¥:)
above and below a point (a,b) in the (a, b)-plane.
D,(a,b) may then be written as follows.
™~y — (o2 + )|
Dt = 3wt m

i=1

= ( > wi(y — (azi +b))

i€Ta(a,b)
- Z wi(yi—(az.'+b)))/\/a2+ 1
i€Ip(a,b)
_ a(Xp—Xa)+b(Wpg —Wu)+Y4—Yp
VvaZz +1
where

Wa=3d w, Xa=)Y wz, Ya=) wy,

i€la i€ls i€la
WB = z wy, XB = Z w; Ty, YB = E Wi Y-

i€lp i€lp i€lp

Hence, given the values of Wy, X4, Ya, Wg, Xp and
Yp, the value of the objective function D,(a,b) can be
computed in constant time.

Suppose the values of the above variables are com-
puted for some fixed parameter values a’ and ¥'. If the
next computation is for new values, a” and ¥”, such
that the above-below relationships of the data points



and the lines defined by y = a’'z + V' and y = a"z + b
do not change, then the values of those variables also do
not change. Hence, the objective function for the pa-
rameters a” and 4" can be computed in constant time.
The above representation scheme is used in all the al-
gorithms for maintaining the contribution of the data
points to the objective function.

3. Orthogonal L; Problem

Both the unweighted and weighted orthogonal L; prob-
lems are solved by considering the problem in the dual
plane. However, since D,(a, b) lacks the convexity of the
vertical Ly norm, there seems to be no obvious method
for approaching the problem in a similar fashion used to
solve the vertical L; problem [17].

First, properties of the orthogonal Ly problem are
given, and naive algorithms based on those properties
are proposed. Second, the unweighted orthogonal L,
problem is considered and details of the complexity of
computing the solution are given. Third, the weighted
orthogonal L; problem is considered and a brute force
algorithm proposed; also, areas of improvement and re-
lated problems are described. Finally, an Q(nlogn)
lower bound under the algebraic computation tree model
of Ben-Or [1] is shown.

. Morris and Norback [13] present two characteristic
properties of an optimal orthogonal L problem solution.

Lemma 3.1. There is an approximate line to the
point set S which minimizes the orthogonal L, norm
and which passes through two points of S.

Lemma 3.1 suggests an O(n?) brute force approach to
solving the problem. For each of the possible ('2') pairs

of points, evaluate the function for a line which passes

through the pair.

Lemma 3.2. The sum of the weights on the opti-
mal approximation line is greater than the difference of
the sums of weights on either side of the line.

Both Lemma 3.1 and Lemma 3.2 also hold in
d-dimensions and can be solved by an O(n?)-time and
O(n)-space algorithm. An idea is to reduce the whole
problem into ( d'_'z) subproblems, each of which can be
solved in O(n?) time by utilizing the topological sweep
of [5].

Morris and Norback suggest using both properties
to find candidate solutions, pairs of data points in the
(=, y)-plane (or pairs of lines in the (a,b)-plane) which
satisfy both properties. They suggest the brute force ap-
proach of inspecting each of the possible () pairs to see
if the line defined by the pair satisfies the second prop-
erty; if so, then compute the L; norm with respect to
the candidate line defined by the pair of points. Clearly,
that algorithm is not a great improvement over comput-
ing the L; norm for every possible pair. However, the
approach does raise the question of how many candi-
date pairs there are. That question can be related to
the number of k-sets as described below.
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Given a set S of n points, a k-set of S is a subset S’
such that S’ contains k points and there exists a line, I,
which separates S’ from S — S’. The number of k-sets
of a set of n points has been shown to have complexities
of Q(nlogk) and O(nk!/?) [7].

In the unweighted problem, Lemma 3.2 is just a
cardinality problem: the difference in the number of
points above and below the line must not exceed the
number of points on the line. The number of candidate
lines is related to the number of k-sets, or “median”-sets
since k = [n/2], of a set of n points in the (z,y)-plane.
Similarly, the number of candidate lines in the weighted
problem is related to the number of “weighted” k-sets,
or weighted median-sets, since the line must satisfy the
second property which balances the weights equally on
each side of the line.

The computation of k-sets is studied in [6]. In that
paper, they introduce the notion of k-belts in the dual
plane. Recall that a line I; is represented in the dual
plane as a point p;; the k-belt is simply the set of points
Pk, the dual transformations of all the lines I which
determine a k-set in the (z,y)-plane.

For each point p in the dual plane, let b(p), o(p), and
a(p) denote the number of lines which lie below p, on p,
and above p, respectively. Clearly b(p) + o(p) + a(p) =
n, for all p. The k-belt, for 0 < k < [n/2], of the
arrangement of lines in the dual plane is defined as the
set of points p in the dual plane such that b(p)+o(p) > k
and a(p) + o(p) > k. The O-belt is the whole plane, and
for k > 1, the k-belt is bounded above and below by
an unbounded monotone polygonal chain. For n odd
and k = [n/2], the two boundaries of the [n/2]-belt,
referred to as the median-belt, coincide. The bold line
in Figure 3.1(b) represents the median-belt for the
seven lines.

Hence, candidate lines in the (z,y)-plane, lines
which define a k-set, are the vertices of the k-belt as
seen in Figure 3.1. Both algorithms consider k-belts
in the dual plane rather than k-sets in the (z,y)-plane
as described below.

3.1. The Unweighted Problem

In the unweighted orthogonal L, problem, the dual
transformations of the candidate lines correspond to
the vertices of the [n/2]-belt, or median-belt (see Fig-
ure 3.1). The algorithm presented below evaluates
the function at each of those vertices in order to de-
termine an optimal value (the existence is guaranteed
by Lemma 3.2). The function evaluations can be per-
formed in the same amount of time as it takes to con-
struct the median-belt.

The construction of the k-belt of an arrangement,
H, of n lines can be performed in O(b;(n) log? n) time
and O(n) space, where bi(n) is the maximum number
of vertices in the k-belt for all arrangements, H, of n
lines [6]. In the unweighted orthogonal L; problem, k =
fn/2] and bpny5(n) = O(n!?).

The algorithm sweeps the arrangement by a vertical
line L from left to right. At @ = —co, the data line, I,
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Figure 3.1. Candidates in the (z,y)- and (a, b)-planes.

with the median slope also has the median intersection
with L. Let H4 be a set of data lines above I, and
similarly Hp a set of data lines below {,, with respect
to the median intersection point. Hence, the sets I4 and
Ig, as defined in Section 2, refer to the indices of the
lines in H4 and Hp, respectively, and the variables used
to maintain D,(a,b) (see Section 2) can be initialized
in linear time. '

The algorithm then sweeps the arrangement to find
the next vertex on the belt which is the intersection of
I and another data line 14, where without loss of gen-
erality the line 14 is assumed to be in the set H4. The
value of D,(a,b) may be computed at the new vertex
in constant time as follows. Subtract waz4 from X4
and way, from Y. Add wp,z,, to X4 and wy,y, to
Y4. Those operations take constant time and D,(a,b)
may be computed in constant time with the updated
values. The algorithm keeps a pointer to the swept ver-
tex which minimizes D, (a,b); clearly, such a pointer can
be updated in constant time. Thus, each step of the
plane sweep can be done without increasing the order
of the complexity. Since O(n!-®log? n) time is spent in
constructing the median-belt, the following result is ob-
tained.

Theorem 3.1. The unweighted orthogonal L,
linear approximation problem for n points can be solved
in O(n'®log? n) time and O(n) space.

The above algorithm, although efficient, is still an
exhaustive search of all the candidate solutions. Also,
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note that the algorithm is for constructing the general
k-belt; for at least one value of k, £ = 1, a more ef-
ficient algorithm, O(nlogn) time, can be obtained by
considering the particular problem. Hence, the authors
conjecture that a more efficient algorithm may be ob-
tained by considering the particular properties of the
median-belt. '

3.2. The Weighted Problem

In the dual plane, the candidate solutions to the
weighted orthogonal L; problem lie on the boundary
of the weighted median-belt of the arrangement, the
set of points which are the dual transformations of the
weighted median lines in the. (z,y)-plane. Hence, the
complexity of finding a solution can be related to the
number of vertices (due to Lemma 3.2), n,, in a
weighted median-belt.

The complexity of n, depends on how a vertex
of the median-belt is defined. A vertex can be de-
scribed as either any point on the boundary of the
weighted median-belt which is incident to more than one
line of the arrangement (called degenerate vertices), or
any point on the boundary of the weighted median-belt
whose incident boundary edges are distinct (nondegen-
erate vertices) (see Figure 3.2(a),(b)). Note that the
nondegenerate vertices are a subset of the degenerate
vertices. )

Since the weighted median-belt is an z-monotone
chain, the number of vertices can be bounded by results
for monotone chains. The number of degenerate vertices
is ©2(n?) [16] (see Figure 3.2(a)). The number of non-
degenerate vertices is Q(n'®) [14] (see Figure 3.2(b),
n = Vk, shaded area has k? vertices); although an (un-
known at the time of printing) improvement to this lower
bound has been reportedly made by R. Cole and J. Ma-
tousek [3].

Note, however, that not all z-monotone chains are
weighted median-belts. In the case of the example for
the degenerate bound, legal weight assignments (bold
numbers) can be given to the lines, however, the par-
ticular example given for the nondegenerate bound can-
not be assigned weights such that the chain becomes a
weighted belt.

The geometry of the (unweighted) median-belt and
of the weighted median-belt can be quite different. In
the unweighted case, the median-belt only has nonde-
generate vertices since the belt switches lines at every in-
tersection. In the weighted case, however, the weighted
median-belt may not switch at an intersection if the cur-
rent edge has a relatively large weight.

An algorithm based only on the properties given by
Lemma 3.1 and Lemma 3.2 must check the objective
function at all degenerate vertices. Hence, the complex-
ity of applying the k-belt construction algorithm, men-
tioned above, to the weighted problem is in O(n? log? n).
However, the weighted orthogonal L; problem can be
solved in O(n?) time by the following “efficient” brute
force algorithm.

An optimal solution is found by performing an
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Figure 3.2.(b) Q(n'%) Non-degenerate vertices

O(n?) time, O(n) space plane sweep as described in [5].
Note that this plane sweep differs from the plane sweep
algorithm used for the unweighted case; the plane sweep
used above only computes points of interest in order
from left to right, whereas the plane sweep here reports
all O(n?) vertices of the arrangement in an order defined
by a topological sweep from left to right.

First, note that the leftmost edge of the weighted
median-belt can be determined in linear time. Second,
the plane sweep algorithm removes degenerate vertices
in the arrangement, hence, each vertex is incident to
only two lines and determining whether a switch to a
new line should take place at a vertex of the belt can be
decided in constant time by maintaining D,(a,b) as de-
scribed in Section 2. Third, since the next event vertex
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Figure 3.3. Uniform Gap Problem on Half Unit Circle

in the sweep is identified by its incident edges (lines), the
vertex can be tested to see if it is on the belt by simply
comparing the current edge of the belt to the incident
lines in constant time.

Since the plane sweep is performed in O(n?) time
and the extra cost to maintain the weighted median-belt
and the function D,(a,b) is O(1) time for each vertex,
an optimal solution may be found in O(n?) time. The al-
gorithm is called an efficient brute force algorithm since
the computations are performed efficiently, reducing the
complexity of a pure brute force search by a factor of
O(n). Also note that the above algorithm implies that
the algorithm for constructing k-belts used in the un-
weighted problem is not, at least in one case, the most
efficient algorithm for computing weighted k-belts.

3.3. Q(nlogn) Lower Bound

This section provides an §2(nlogn) lower bound for the
orthogonal L; problem under the algebraic computa-
tion tree model [1]. (Due to space limitations not all
the proofs are included in this paper). First, the lower
bound of the complexity of a certain uniform gap prob-
lem of n points on a circle is shown to be in (nlogn)
under the algebraic computation tree model. Second,
that uniform gap problem is reduced to the unweighted
orthogonal L; problem in linear time, thus proving an
Q(n log n) lower bound of this approximation problem.

The uniform gap problem on the unit circle is de-
fined as:

Problem 3.1. Uniform Gap Problem on the
(Half) Unit Circle. Givenm+1 points py,pa,...,Pm,
Pm+1 on the unit circle 22 +y® = 1 such that p; = (1,0),
Pm+1 = (—1,0) and the y-coordinates of points p; (i =
2,...,m) are positive (see Figure 3.3), the uniform gap
problem on the unit circle answers whether the distances
of every consecutive pair of points are equal when these
m + 1 points are arranged in increasing order of their
polar angles.

Denote the (z,y)-coordinates of point p; by (zi, yi),
where 21 = 1, Z41 = —1 and y; > 0. For a permuta-
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Figure 3.4. Transformed Input
tion o on {2,...,m}, define W,.Cc R™~! by
W, = {(zz,...,xm) eR™ 1|
=21 > z4(2) > 2o(3) > -
> Zo(m) > Zmy1 = -1,
(Zogi41) — Toi))?
2
+ (\/1 — 220y — \/1 —z2,) = e’},
where 6(1) = 1 and o(m + 1) = m + 1. Define

W c R™! by W = |J, W, where the union is taken
over all permutations o on {2,...,m}. Then the answer
for the uniform gap problem for points py,pa,...,Pm+1
is yes if and only if (z2,...,zm) € W, which implies
that, by Ben-Or’s theorem [1], a lower bound of the
complexity of the uniform gap problem under the alge-
braic computation tree is Q(log #W) where #W is the
number of connected components of W. #W can be
shown to be equal to (mm — 1)!, hence, the following re-
sult holds under the algebraic computational model of
Ben-Or.

Lemma 3.3. The complexity of the uniform gap
problem on the unit circle is Q(mlogm).

Next, the input for the uniform gap problem on a
circle is transformed, in linear time, to an input for the
orthogonal linear L, approximation of points. Given
the points p1,p2, ..., Pm+1 of the uniform gap problem,
assume that, without loss of generality, 0 = 8, < 62 <
++» < Oy < Opy1 = 7w, where 0; denotes the polar angle
of p;. For each p; (i = 2,...,m), construct the point
Pi+m on the unit circle whose polar angle 6;4,, is equal
to 8; 4+ (see Figure 3.4). The set, S, of n = 2m points
P1,P2,- - -, Pn 1s then used as the input for the orthogonal
Ly problem. The transformation is then completed by
showing the following result.

Lemma 3.4. The minimum objective function
value of the orthogonal Ly linear approximation for the

. . T . .
set S of points is at most 2 cot o and is 2 cot ~ if and
n
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only if the answer for the uniform gap problem of points
P1,P2,- .- Pm,Pm+1 is yes.

The proof is developed as follows. For the or-
thogonal linear L; approximation problem, it is known
that there is an optimal approximation line such that
the line passes two points among the given points and
|Na — Ng| < No where N4, Np and No are the num-
bers of points above, below, and on the line [13]. By the
definition of the transformed problem, there is an opti-
mal approximation line among the m lines I; connecting
points p; and pij4m (i = 1,...,m). The function value
of I;, the summation of the orthogonal distances from
points p; (j = 1,...,n) to l;, is given by

n
3" Isin(d; — 60)] 8
i=1
Hence, the minimum function value of the orthogonal
linear L, approximation for S is given by

n
(pin,, 3 lsin(és = 09 @)
i=

We are considering to maximize (2) for 0 = 6; < 02 <
-+ < Op < 7and Oiym = 6; (i = 1,...,m). How-
ever, this is an optimization problem of maximin type,
and rather difficult to handle directly. Instead, we will
consider to maximize

>3 Isings; - 6. ®

i=1j=1
Here, observe that the function values for lines ; are
the same when the set S of points are uniformly placed
on the circle. Hence, if (3) is maximized when and only
when the set S of points are uniformly placed, then (2)
is maximized only in the same uniform case.
Let us prove that (3) is maximized when and only

when the set S of points are uniformly placed. (3) is
further expressed as

m n m i+m
S ¥ lsin(g; -8 =23 D sin(9; - 6s)
=1 j=1 . =1 j=i41
=2 Z (E Sil‘l(0,'+k - 0,))
k=1 ‘i=1
For any k = 1,...,m, we have

m
0< 9.'.”, —-6; < 1,2(0,‘.”, - 9;) = kn.
=1
Since sin z is strictly concave on the interval [0, 7], we
have

o kn

Z;Sin(9i+k - 67,) S msin -1;

1=
and the equality holds if and only if all 6;34 — 0; (i =
1,...,m) are equal. All ;43 — 0; (i = 1,...,m) are
equal for any k = 1,...,m if and only if all 6;}, — 6;
(i=1,...,m) are equal. Hence, (3) is maximized when
and only when the set S of points are located uniformly
on the circle.

When the set S of points are placed uniformly, the
function value of the orthogonal linear L; approximation



is expressed by
2w i T T
lem_ﬁm—l = 2Zs1n; = 2cot-27n— = 2cot o
i=1 ji=1
Thus, we have shown Lemma 3.3.
Using the above lemmas, the {ollowing result pro-
vides a lower bound for the orthogonal L; problem.

Theorem 3.2. Under the algebraic computation
tree model, the complexity of the orthogonal L, linear
approximation of n points is Q(n logn).

This result is mainly of interest to the unweighted
orthogonal problem since the actual bound for the algo-
rithm presented above is in O(b(n) log? n), where b;(n)
is the number of k-sets of n points (k = [n/2]). As men-
tioned above, the bounds for b (n) are in Q(nlogk) and
O(nk'5) (Q(nlogn) and O(n?), respectively, for k =
[n/2]), but Erdés, Lovész, Simmons, and Strauss [7]
conjecture that the upper bound is actually closer to the
lower bound of Q(nlog k) (Q(nlogn) for k = [n/2]).

4. Conclusion

Several results were given concerning the computation
and analysis of the orthogonal L; linear approximation
problems. The results are significant from theoretical,
practical, and historical viewpoints.

The results are of theoretical interest in discrete
and computational geometry, since a nice connection is
demonstrated between the orthogonal L; problem and
the (weighted) median belt, thus having raised some
questions about the complexity of computing median-
belts and weighted median-belts.

The results are of practical interest since the algo-
rithms provide efficient algorithms for solving the most
popular forms of the L, approximation problem. The
results are of particular interest for the linear facility
problem and the linear regression problem since the al-
gorithms provide practical and efficient alternatives to
the currently used methods (for example, the Ly and
L, approximations).

The results are of historical interest since this is the
last of the three most popular L, approximation prob-
lems (p = 1,2, 00) to succumb to efficient algorithms. [2]
notes that alternative criteria to the L, norm have been
investigated since the mid-1750s when R.J. Boscovitch
proposed a geometric method for solving a special case
of the L; approximation problem.

Continuing research includes the L; problem in
higher dimensions, which is of particular interest to
econometricians since they often consider the linear and
non-linear L, problems in higher dimensions. Recently,
Kato and Imai [9] have succeeded in devising a linear-
time algorithm for the vertical L, problem in the three-
dimensional space. It is conjectured that the result can
be extended to higher dimensions. It is a challenging
problem to improve the complexity of the algorithms
for the orthogonal L; linear problem described in this
paper.

(8)
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