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Roughly Sorting:
Sequential and Parallel Approach

Tom Altman* and Yoshihide I garashi**

*Department of Computer Science, University of Kentucky,
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A sequence o = (ay,0z,...,a,) is k-sorted if for all 1 < 4,5 < n, ¢ —j > k implies
a; < a;. We first show an online algorithm for determining if a given sequence is &-
sorted and an O(n)-time algorithm for finding the smallest k for a given sequence to be
k-sorted. Next, we give two sequential algorithms that merge two k-sorted sequences
to form a k-sorted sequence and completely sort a k-sorted sequence. Their running
times are O(n) and O(n log k),respectively. Finally, parallel versions of the complete-
sorting algorithm are presented. They are adaptable for most parallel architectures.
Their parallel running times are O(f(2k) log k), where {(2) is the computing time of an
algorithm used for finding the median among ¢ elements.



1 Introduction

The concept of roughly sorting has appeared in the
context of parallel sorting on a mesh-connected proces-
sor array. Igarashi and Sado have designed fast paral-
lel sorting algorithms in which roughly sorted subfiles
are merged [9,10]. Fundamental properties of roughly
sorted sequences and some sequential algorithms have
been studied in [4,5]. The notions of presortedness and
nearly sorted lists [3,7,8] are related to the ideas pre-
sented in this paper, but are somewhat different from
the roughly sorted lists we will study here.

A number of applications require only roughly or
nearly sorted sequences[5]. For example, consider a
sorted file in which the item values are occasionally
updated. In many cases, the new item values may not
differ greatly from the old ones. However, by replacing
the old items with new ones, the sorted order may be
disturbed. Since re-sorting the entire file is costly, it
may be more efficient to leave it in a roughly sorted or-
der. We may then use the algorithms described below
to obtain a completely sorted file.

In this paper, we present algorithms, that create
and manipulate roughly sorted sequences in both se-
quential and parallel environments. In Section 2, we
formalize our notion of rough sortedness and k-sorted
sequences. Algorithms that determine if a sequence is
k-sorted and the k-sortedness of a sequence are given
in Section 3. In Section 4, we present an algorithm
that merges two k-sorted sequences into one k-sorted
sequence. Finally, in Section 5, we design sequential
and parallel algorithms that completely sort k-sorted
sequences.

2 k-Sortedness

We begin by formalizing our notion of roughly sort-
ed sequences. Let a = (ay, as, ..., a,) be a sequence of
n items and 0 = (a4, @o,, ---, G0, ) the corresponding
completely sorted sequence of elements.

Definition 2.1 A sequence « is k-sorted if and only
if the following condition is satisfied:
foralli,j 1<i<j<mn,i—j>2k—a;<a;
The above definition was introduced by Igarashi
and Wood [5]. The radius of « is define to be the
smallest k, such that « is k-sorted, and denoted by
ROUGH(a). As shown by Estivill-Castro and Wood

[4], the radius presortedness measure satisfies the ax-
ioms introduced by Mannila {7].

Observation 2.1 If a sequence a has no duplicate en-
tries, then it is k-sorted if and only if for all i,

li—d;l S k.

Hence, for all i, a; is no more than k places away
from its proper position in a completely, or 0-sorted,
sequence.

Observation 2.2 [5] a is k-sorted if and only if every
(2k+2) block, (i.e., a sequence of (2k+2) consecutive
elements of ), is k-sorted. This plays a key role in
the design of our algorithms.

3 Determination of the Radius

Several interesting problems arise concerning k-sort-
ed sequences. In particular, we might ask if a given se-
quence is k-sorted. Second, we might wish to compute
the radius of a given sequence. We show that both of
these questions can be answered efficiently.

Lemma 3.1 Given o, a sequence of n elements and
a positive integer k, we can decide online(i.e., in n)
whether a is k-sorted.

Proof: Imagine a bus with a passenger capacity of
k+1. At each stop, one passenger gets off and another
gets on (in a FIFO fashion). The driver always remem-
bers maz, the weight of the heaviest passenger that got
off the bus so far. If the weight of the incoming pas-
senger is less than maz, the driver stops the bus and
declares: These people are not k-sorted.

It is possible to implement the above with two
pointers (always k+1 positions apart) to the sequence
a and a variable maz in which the value of the largest
encountered element, outside the current (k1) is stor-
ed Going left to right, the procedure will always iden-
tify the first occurrence of a violation of k-sortedness
of aD

Below, we present an efficient algorithm ROUGH(«),
i.e., the radius of a.

Definition 3.1 Let a = (a1,as,...,Gs) be a sequence
of n items. The LR characteristic sequence of o is de-
fined to be (by, ..., b,), where for each i(1 < i< n)b; =
maz{ay, ...,a;}. This sequence is denoted by LR(a).
The RL characteristic sequence of a is defined to be
(€15 -y Cn), where for each i(1< i< n) ci=min{a;, ..., an}.
This sequence is denoted by RL(c).

Definition 3.2 Let @ = (a1, 0z, ...,an) be a sequence
of n items. Let LR(a) = (b1 -y bs) and RL(c) =
(€15--s€n)- The disorder measure sequence of o is de-
fined to be (dy,...,dn), where for each i(1 < i < n)
d; = maz({i — jle; < bj} U {0}). This sequence is
denoted by DM(a).

Theorem 3.1 Let o = (a;,4as, ..., @) be a sequence of
n items. Then ROUGH(a)=maz{d:|d; is an item of
DM(a)}.




Proof: Suppose that RO UGH(a)=k. If k=0, then « is
completely sorted and LR(a)=RL(a). Hence, in this
case for any i (i< 1 < n) d; = 0, and the assertion of
the theorem holds.

Suppose that ¥>1. Then, there exists a pair of 1
and j such that j —¢ = k and a; > a;. Hence, for such
J,d; > 7 —t = k. On the other hand, for any pair of ¢
and j such that j —i < k4 1,a; < a;. Therefore, for
any j(1<j<n),d;<k+10

Below, we present three procedures which construct

the LR,RL, and the DM sequences of a = (a1, a, ..., a,).

procedure LR(a, B[1..n]);
begin
B[1] := aj;
fori:=2ton
if B[i — 1] < a; then B[i] :=a;
else B[:] := B[t — 1]
end.

procedure RL(a, C[1..n]);
begin
Cln] == ap;
for i :=n—1 downto 1
if C[z + 1] > a; then C[z] = a;
else C[t]:= Cli +1]
end.

procedure DM(B/1..n], C[1..n], D[1..n]);
begin ‘
set queue @ empty;
for i := n downto 1
begin
insert(z, C[i])at the rear of Q;
while (Q not empty) and (the second
component of Q(first)< Bli])
and (the second component of
Q(first)> Bli — 1] or : = 1) do
begin
(¢, C[t]):=the first element of Q;

D[t]:=t—1;
remove the first element of @
end
end

end.

Using procedure LR, RL, and DM, we can decide
max{d; | d; is an item in DM(a)} in linear time to n.
From Theorem 3.1, that value is equal to ROUGH(a).

An example of a 5-sorted sequence «, its LR and
RL sequences, and the maximal element d;, from the
sequence DM, is shown in Figure 1.

4 Sequential k-Sorting

In this section, we present three algorithms that
operate on k-sorted sequences. First, we describe pro-
cedure HALVE, which takes as input a 2k-sorted se-
quence v and returns a (k—1)-sorted sequence é. Next,
in procedure MERGE, we show how two k-sorted se-
quences, « and 3, can be merged to produce a k-sorted
sequence «. Finally, procedure QMSORT show how a
k-sorted sequence « is sorted in time O(n log k).

procedure HALV E(~, 6, k);
{Suppose v = (a1, az,...,an). Assume n = 2kr. Ifn
is not a multiple of 2k, the peocedure needs a minor
modification. }
begin
1. fori:=1tor
begin
Qi 1= A2k(i-1)41 - + - Q2ki;
PARTITION(C!{, [ 5% a.-,)
end;

2.fori:=1tor—1
begin
Bi i= @i, 041y
PARTITION(B;, B, Bi,)
end;

3. o 1= ay, By ar = ﬂ(r—l)zarz

4. fori:=2tor—1
begin
o = ﬂ(.‘-l),ﬂﬁ;
PARTITION (a;, oy, atiy)
end;

5. 6§:=ay,a1, . . . a0,

end.

Here, PARTITION(a, 8,7) finds the median m of
a and condtructs a partition (8,v) of a by m(i.e., any
item in # <m < any item in 7).

A computation process by HALVE(y,6,k) is de-
picted in Figure 2.

Theorem 4.1 Let vy be a 2k-sorted sequence of length
n. Then HALV E(v, 6, k) returns a (k—1)-sorted sequen-
ce of v in 6 in O(n) time.

Proof: We use the following notation: For z and y
a pair of sequences, * < y means that any item in z
is not greater than any item in y. Since v is initially
2k-sorted, after Step 1, for each odd i,

Q1 .. 0iog), S oy < Qit1)y - - - Qry and o, < .

Hence, after Step 2, for each odd i,



a1y - 0im1), S oy < o) - O,

Then, after Step 3, for each odd i,
ayy Qo) S0 S,

Therefore, 6 is a (k — 1)-sorted sequence of v after
Step 5. Since the median of n items can be found
in O(n) time (e.g., see [1]), the computing time of
HALVE(y,6,k) is O(n)O

Procedure MERGE below takes as input two k-
sorted sequences a = (a1, ay, ..., a,) and B = (by, by, ...,
b,), and returns (in -y) the resulting merged k-sorted
sequence of length 2n. For simplicity, we assume that
kis even and n = kr. For n and k not satisfying these

conditions, the procedure with a minor modification is
still valid.

procedure MERGE(«a,f3,7,k);

{7 is a queue and initially empty }

begin
1.HALVE(a, o', k/2); HALVE(S, 8, k/2);
{a'=ay,...,a, and 8’ =b,, e b0}

2. fori:=1to 2r
begin
Q; = Ap(i1)/2+1---Okif2s B 1= br(im1)/241-+-Ghif2;
amaz; := maz(a;); bmaz; := maz(B;)
end;

3. p:=q:=1;
4. while (p < 2randq < 2r)

begin
if amaz, < bmaz, then
begin
add a;, to 7;
all elements in B, not greater than amaz,
are removed from 3, and added to v;
p:=p+1; if B, is empty then g :=¢q¢ +1
end
else
begin
add g, to v;
all elements from «, not greater than bmaz,
are removed from a, and added to ~;
¢:=gq+1;if a,is empty then p:=p+1
end
end;
5. if p < 2r then ay, ..., a3, are added to 7;
6. if ¢ < 2r then 3, ..

., B2r are added to v
end. ‘

Theorem 4.2 Let o and B be two k-sorted sequences
of length n. Then MERGE(a,f,v,k) returns a k-
sorted sequence of length 2n which is merged from «
and B in O(n) time.

proof: After Step 2, for any pair of 7 and j, such that
1<i<j <20 £ ajand B; < B; (see Figure
2). For each ¢, at the beginning of #-th iteration of
while statement of Step 4, any element in v is not
greater than any element in ay,...,az,, f;,...,02-. On
the other hand, during the ¢-th iteration, the number
of items transferred from a, and 3, to v is at most 2k.
Therefore, the sequence in v is always k-sorted. Hence,
at the end of computation, v is a k-sorted sequence of
length 2n.

From Lemma 4.1, the computing time at Step 1 is
O(n). Step 2 obviously takes O(n) time as well. For
each iteration of the while statement, the computing
time is O(k). Since r = O(n/k), the computing time
at Step 4 is O(n/k)O(k) = O(n). Therefore, the time
for MERGE(a, B,7,k) is O(n).O

Using procedure HALVE, we can design a very
simple algorithm that completely sorts a k-sorted se-
quence in time O(n log k). It is a variation of the
quicksort algorithm in which the partitioning element
is chosen to be the median of a given subsequence. For
this reason, we call the algorithm @MSORT. As shown
in [4] and [5], the running time O(n log k) is optimal
within a constant factor. The proof is based on the

decision tree argument. Algorithm RHEAPSORT (5]
also completely sorts a k-sorted sequence in O(n log
k) time. Its constant factor is smaller than the con-
stant factor for QMSORT. However, as shown in the
next section, QMSORT has a very natural and direct
implementation for parallel environments, whereas the
parallel implementation of RHEAPSORT seems to be
impractical.

procedure QM SORT (o, k);
begin

for I := '25, '}, g—,...downto 1 HALVE(a,a,1)
end.

Observe that the procedure HALVE reduces a 2k-
sorted into a (k — 1)-sorted sequence. Hence it is
pointless invoke HALV E(a,a,0). Moreover, to sort
1-sorted sequences, one may use algorithm ONESORT
[5], which has been shown to be optimal in the worst
case and to be close to the known lower bound in the
average case.

The next theorem is an immediate consequence of
Theorem 4.1.

Theorem 4.3 QMSORT sorts a k-sorted sequence in
time O(n log k).




QMSORT may, of course, be used to sort an arbi-
trary sequence of n elements which by definition is at
least (n — 1)-sorted, in time O(n log n).

5 Parallel k-sorting

In this section, our model of computation is the stan-
dard PRAM without concurrent reads or writes. First,
let us examine the problem of transforming a 2k-sorted
sequence of n elements into a (k — 1)-sorted sequence.

The procedure PHALVE takes as input a 2k-sorted
sequence 7y and returns a (k — 1)-sorted sequence é.

procedure PHALV E(y, 8, k);
{ Suppose 7 = (a1, 42, ...,4,). Assume n = 2kr. If n
is not a multiple of 2k, the procedure needs a minor
modification. }
begin
1. for i ;=1 to r do in parallel
begin
Q; 1= Qk(i-1)41- - « Q2ki;
PPARTITION (e, iy, atiy)

end;

2. for i :=1 to r — 1 do in parallel
begin
Bi i= @ity
PPARTITION(B;, B:,, Bi;)
end;

3. oy = ay; By @r 1= Bir-1), 05

4. for i :== 2 to r — 1 do in parallel
begin
a; = B(i-1), P55
PPARTITION (o, iy, o)
end;

5. 8:=aj0q, - - .
end.

arl aTZ

Let f(2) denote the time for finding the median of
t elements used in procedure PPARTITION.

Lemma 5.1 The computing time for PHALV E(~, 6, k)
by the PRAM is 3f(2k) + O(1).

We now present a parallel algorithm that sorts a
k-sorted sequence a.

procedure PQM SORT(a, k);
begin

for i := ’21, %, %,... downto 1 PHALV E(a, o, 1)
end. )

Theorem 5.1 PQMSORT sorts a k-sorted sequence
of size n in time O(f(2k) log k), using O(n) proces-
sors.

Proof: The proof of correctness follows directly from
Theorem 4.1. The overall running time for PQM SORT
is O(f(2k) log k) by Lemma 5.1 O

As stated in Theorem 5.1, the computing time of
PQMSORT depends on the efficiency of the median
finding algorithm used. For example, if we choose an
O(log k) median algorithm, the time complexity of
PQMSORT becomes O(log’k).

Corollary 5.1 PQMSORT sorts a k-sorted sequence
of size n in time O(k log k), using(%) processors.

proof: The determination of the medians of each a;
and B; can be performed by a single processor in O(k)
time O

6 Concluding Remarks

We have designed a number of algorithms for rough-
ly sorted sequences. These algorithms, with the ex-
ception of PQMSORT, are optimal to within constant
factors. We do not yet know the optimal factors for
the time complexities of these problems except for the
algorithm given in the proof of Lemma 3.1. We are
interested in accurate evaluations of these factors. It
would also be of interest to redesign our algorithms us-
ing a simpler parallel model, e.g., the mesh-connected
processor array, rather than the PRAM model of com-
putation.

References

1. Aho, A.V., Hopcroft, J.E., and Ullman, J.D.,
The Design and Analysis of Computer algorithms,
Addison-Wesley Publishing Company, 1974.

2. Bilardi, G. and Preparata, F.,” A Minimum Area
VLSI Architecture for O(log N) Time Sorting,
? Proc. 16th Annual ACM Symp. on Theory of
Computing, pp. 64-70, 1984.

3. Cook, C.R. and Kim, D.J., "Best Sorting Algo-
rithms for Nearly Sorted Lists,” CACM, Vol. 23,
pp. 620-624, 1980.

4. Estivill-Castro, V. and Wood, D., ”A New Mea-
sure of Presortedness,” Thecnical Report CS-87-

58, Department of Computer Science, University
of Waterloo, 1987,



5. Igarashi, Y. and Wood, D., "Roughly Sorting:

A Generalization of Sorting,” Thecnical Report
CS-87-55, Department of Computer Science, Uni-
versity of Waterloo, 1987.

. Leighton, T., ”Tight Bounds on the Complexity
of Parallel Sorting,” IEEE Trans. Comput., C-
34, pp. 344-354, 1985.

. Mannila, H., ”Measures of Presortedness and Op-
timal Sorting Algorithms,” IEEE Trans. on Com-
puters, C-34, pp. 318-325, 1985.

— o s e e e NN
S b o R aeaibhodR

8. Mehlhorn, K., ”Sorting Presorted Files,” 4-th GI

Conf. on Theory of Computer Science, pp. 199-
212, 1979.

9. Sado, K. and Igarashi, Y., ” A Divide-and-Conquer

Method of the Parallel Sort,” Tech. Report AL84-
68, IECEJ, 1984.

10. Sado, K. and Igarashi, Y., ” A Fast Parallel Pseudo-

Merge Sort Algorithm,” Tech. Report AL85-16,
IECEJ, 1985.

- —

RL

S =M N WA U 0@

1
i
1
i
ROUGH(e) = 5 !
!
]
[}
[}
[}

2 3 5 1 4 2 6 8 7 9 8 11 6 13 12 16 15 17 18 20 18 19 21 19

(a3 =

DM(a) =

Figure

(2,3,5,1,4,2,6,8,7,9, 8,11, 6,13,12,16,15,17,18,20,18,19,21,19).
(0,1,2,3,3,4,0,0,1,2,3,4,5,0,1,0,1,0,0,0,1, 2, 3, 4).

1. The LR and RL sequences, and the max d; from DM, where




Qi1 [« 5 Qi1

ANNNNNNNN]T 1 DXDXPXIXDSIXE I VAN

(a) The initial configuration of a 2k-sorted sequence vy = ay...0.
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(b) After step 1.
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(d) After Step 4.

Figure 2. The order of a; during the computation by

HALVE(y, 8, k), where i is an odd integer.



