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We introduce a parameter of indexing functions and show its relation to lower bounds for
sorting algorithms on mesh-connected computers that follow from the Chain Theorem. We give
lower and upper bounds for the parameter. Conclusions from our results are: (1) no matter what
indexing function is used, any sorting algorithm must execute 2.27n + ©(1) steps; (2) the best
lower bound true for all indexing functions that we can hope to prove by the Chain Theorem

argument is 2.5n + O(1).



1. Introduction

In this paper we study a combinatorial problem
that arises in considerations of sorting problems on
a mesh-connected computer. As usual in such cases,
it is of main concern to design fast algorithms and to
prove lower bounds for the complexity of the problem
to get an idea how good designed algorithms are.
In the case of serial sorting, it is well known that
for sorting n elements by comparisons O(nlogn) is
both the lower and the upper bound for time required
to sort. The method of decision trees is powerful
enough here to prove that fastest known algorithms
are, in fact, optimal within a constant factor.

Sorting on a mesh-connected computer has re-
ceived much attention lately ([HI1,HI2,K1,K2,MSS,
SS]). It turns out that the efficiency of a sorting al-
gorithm depends on the indexing function used (see
[HI1]), i.e., the function which for each i,1 <i < n?,
specifies the final location in the mesh of processors
of the element of rank i. For a snake-like row-major
indexing scheme an algorithm running in 3n + o(n)
steps .is known (Schnorr and Shamir [SS]), and it
is also known to be optimal (Kunde [K1], Schnorr
and Shamir [SS]). (In the paper we use two notions:
indezing function and indezing scheme. An index-
ing scheme is a family of indexing functions, one for
each n, sharing certain property. See next section for
more details.) So far, no sorting algorithm is known
that would run in (3 — €)n + o(n) steps, for some
€ > 0. Also, the snake-like row-major and snake-like
column-major indexing schemes are the only (up to
trivial variations) indexing schemes for which fastest
algorithms are known to be optimal.

Clearly, sorting on n x n mesh of processors must
take at least 2n steps. The element whose final loca-
tion is in the processors in a corner of the mesh may
be initially stored in the processor in the opposite
corner, and it takes at least 2n steps merely to.move
it to its proper final destination. This “structure
based” lower bound is too weak. No sorting algo-
rithm running in 2n steps is known (and as we will
see later, no such algorithm can exist). Only recently,
a more powerful lower bound technique, known as
joker-zone method, was discovered by Kunde [K1]
and Schnorr and Shamir [SS]. They used the method
to show that 3n is a lower bound for the running time
of any algorithm sorting into snake-like row-major
or row-major indexing schemes. Their method was
subsequently refined by Han and Igarashi [H1]. They
developed an argument based on the so called Chain
Theorem, and proved that (1 +v6/2)n + ©(1) is a

lower bound for the running time of any sorting al- .

gorithm, no matter what indexing function is used.
In the paper we use the following convention:
For functions f, g and h defined on the same set D

(1) f(z) = g(z) + ©(h(z)) means that there are
constants A and B such that

9(z) — Ah(z) ~ B < f(z) < g(z) + Ah(z) + B;

(2) f(z) = g(z) + O(h(z)) means that there are
constants A and B such that

f(2) 2 g(z) + Ah(z) + B;

(3) f(z) < g(z) + O(h(z)) means that there are
constants A and B such that

f(z) < g(=) + Ah(z) + B.

Han and Igarashi [HI1] also constructed an exam-

ple of poor indexing scheme; any algorithm sort-

ing into this indexing scheme must execute at least

4n + ©(y/n) steps. Several of the results discussed

above were extended to the case of d-dimensional
mesh-connected computers([HI2,K2]).

" The main goal of this paper is to study the power
of the ChainTheorem of {HI1] in proving lowerbounds
for sorting algorithms. To this end, for an index-
ing function I we define a combinatorial parameter
called stretch and denoted s(I), and we show that
lower bounds implied by the Chain Theorem directly
depend on this parameter. Our first main result pro-
vides a lower bound for s(I); this allows to prove that
independent of an indexing function, every sorting
algorithm requires at least 2.27n steps, an improve-
ment over the old bound of (1 + v6/2)n + ©(1) of
[HI1]. Our second result exhibits an indexing func-
tion I with s(I) = 0.5n + ©(1). This outlines limits
for the power of the Chain Theorem, more precisely,
it says that the best universal (independent of an -
indexing function) lower bound we can hope to ob-
tain by an argument based exclusively on the Chain
Theorem is 2.5n. .

The paper consists of 4 more sections. In Section
2 we introduce necessary notions, restate the Chain
Theorem, and formally state the problem. In Sec-
tion 3 we study lower bounds for s(I) (this implies
lower bounds for sorting algorithms). Limits to the
power of the Chain Theorem are discussed in Section
4. Section 5 contains concluding remarks and seme
open problems.

2. Preliminaries and problem formu-
lation

We consider a general model of a synchronous
nxn mesh-connected processor array as given in [SS).
It is denoted by M[0..m,0..m]; here, and through-
out the paper m=n-1. Each processor at location
(4,7),0 < 4,5 < m, is denoted by M, j]. The dis-




tance between M{[iy,i;] and M([j1, j2] is defined as
lix = ja| + [i2 ~ ja| and denoted by d((i1,z), (j1, 52))-
Processor M[iy, i) is directly connected with proces-
sor M(j1, j2) if and only if d((iy, 2), (j1, j2)) = 1. This
model is illustrated in Fig. 2.1.

Figure 2.1. A mesh-connected processor array

All n? processors work in parallel with a single clock,
but they may run different programs. As for sorting
computation, the initial contents of M[0..m,0..m|
are assumed to be n? items drawn from a totally or-
dered set, where each processor has exactly one item.
The final contents of M[0..m,0..m] is the sorted se-
quence of the items in a specific order. In one step
each processor can communicate with all of its direc-
tly connected neighbor processors. The interchange
of items in a pair of directly connected processors of
the replacement of the item in a processor with the
item in one of its directly connected processors can
be done in one step. The computing time is defined
as the number of parallel steps of such basic oper-
ations to reach the final configuration. The biggest
distance between two processors in the same row (or
column) is m.

A one-to-one function I: {0,1,...,m}? — {1,2,
-.yn?} is called an indezing function. Given an -
dexing function I, the goal is to sort n? items initially
stored in the n? processors so that when the algo-
rithm terminates, the item of rank & (the k—th small-
est) is located in processor M, j], where I(i,j)y=k.
A family of indexing functions, one for each n, shar-
ing some property is called an indezing scheme. Var-
ious indexing schemes are shown in Fig. 2.2.

A subset of M[0..m,0..m] is called a region. Fora
region S the number of processors in S will be called
the cardinality of S and will be denoted |S|. In the
sequel we often assume that the mesh of processors
is embedded in the real plane in such a way that
processor M[i, j] is being located in point (i,j). In
this geometric setting the cardinality of a region is
easy to compute. If P is a convex polygon in the
plane then the set of processors located in points of
P has cardinality equal to | P|+©(p), where |P| is the
area of P and p is the perimeter of P. The formula
remains true if P is not convex but is the union of
two interior-disjoint convex polygons.
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Figure 2.2. Various indexing schemes

A set {(411,712), ..., (3e1,5c2)} i called a chain un-
der indezing function I (or a chain if I is under-
stood) if {I(211,412), oy I(ic1,12)} is a set of consec-
utive integers. The length of such a chain is ¢. If
(i1,172) is in {0,m}? and z is a positive real number,
{Mlj1, 52] = d((i1,42), (41, 42)) < &} is called a corner
region and is denoted by CREG((i1,13); z). An open
corner region is the set {M{[f1, 2] : d((i1,12), (ji1, jz2))
< z}, and it is denoted by CREG,((i1,4,); ). The
set of all processors that are at distance at least m —
e from all four processors M([0, 0], M[0, m], M[m, 0],
and M [m, m] is called a center region and is denoted
by CENT(z). Throughout the paper, for any two
real numbers a and b, [a, 5] denotes the set of all in-
tegers j, such that a < j < b.

Consider now an indexing function I and a cor-
ner region R = CREG,((i,);z), for some real z,
0 < z < 2m. Let c be the length of a longest chain
contained in R, and let #(R) be the smallest real
number ¢ such that ¢ < [CREG((1,7);t)] (¥(R) is
well defined, in fact, it is an integer). Finally, put
s(R) = z — t(R). The stretch s(I) of I is defined as
s(I) = sup s(R), where the supremum is taken over
all corner regions R. The next theorem has been de-
rived in [HI1] and is called the Chain Theorem. It
gives a lower bound for sorting into the order speci-
fied by an indexing function I in terms of s(I).



Theorem 2.1. (Chain Theorem [HI1]) Let I be an
indezing function. Then, every algorithm for sorting
n? items into the order specified by I takes at least
2n + s(I) + ©(1) steps.

This theorem points to the importance of the pa-
rameter s(I) in studying lower bounds for sorting on
mesh-connected computers. In this paper we study
the parameter s, = min s(I), where the minimum is
taken over all possible indexing functionsonannxn
mesh of processors. We show that 0.27n < s,(hence,
every sorting algorithm must require at least 2.27n
steps), and that s,, < 0.5n (hence, the best universal
lower bound that can be obtained using the Chain
Theorem only is 2.5n).

3. Lower bounds

In this section we will show two theorems each
giving a lower bound for s,. The first one gives the
lower bound initially presented in [HI1]. We present
here a different proof of that result which is simpler
than the original one and helps better understand
the approach behind the proof of the improved lower
bound for s, (Theorem 3.3). We start with the fol-
lowing lemma.

Lemma 3.1. Let a be a real number, 0 < a < 1/2.

(a) IY([an?,(1 — a)n?]) C CENT((1 — V2a)n +
s(I) + O(1)).

(b) Let z, = inf{z : |CENT(z)| > |[an?, (1 —
a)n?||}.We have

o = ny/1/2—a+0O(1) ifl/é<a<1/2
"7l n1-+va)+0(1) if0<a<l/4

Proof. (a) Let b be an integer, b € [an?, (1 — a)n?].
Suppose I71(b) §CENT((1 — vZa)n + s(I) + 1).
Then, for some (3, j) € {0, m}?, I} (8) e CREG((3, 5);
nv2a—s(I)—2). Let d((,7),I7*(b)) = zandlet R =
CREG((3,),2m — ). Cleatly, z < nvZa—s(I)~2,
and the longest chain contained in R has length at
most (1 — a)n?. Hence, #(R) < 2n — nv/2a.- Conse-
quently, s(R) = 2m — z — t(R) > s(I), a contradic-
tion. ’

(b) Follows directly from the following formula for
the number of elements in a center region.

222+ O(z) if0<z<m/2

|[CENT(z)] < { n?—2(m —z)? + O(m — z)
ifm/2<z<m m]

Theorem 3.2 (Han and Igarashi, [HI1] ) s, > (v8/2
—~1)n+ 0(1).

Proof. Let us consider an arbitary indexing function
I. Under the notation from Lemma 3.1 we have

z, <n+s(I)—V2an+0(1)
{this follows from Lemma 3.1 (a)). Hence (by Lemma
3.1 (b))7

n(y/1/2 — a+v2a—1) + (1)
iflfa<a<1/2

n(v2a — \/a) + 6(1)
if0<a<1/4

s(I) 2

Maximizing the right hand side with respect to a we
get s(I) > (V6/2 — 1)n + ©(1), as claimed. u}

" Next, we present an improvement on this result.
We first prove an auxiliary lemma.

Lemma 3.3. Consider two center regions By and
B, and regions C; and D;, i = 1,2,3,4 as shown in
Fig. 3.1. Deﬁ'n,e H,' = C,‘U D,' U Ci+1, 1= 1,2,3,
and H4=01UD4UC4. Put B = 31 ——Bz, b= |B|,
and d = |Dy| (regions D; have all the same size).
Assume that more than b/2 + 2d elements of B are
colored with blue and green and suppose that there is
at least one element of each color. Then at least one
of the regions H; contains elements of both colors.

Figure 3.1. Regions on the mesh-connected model

Proof. Without loss of generality we may assume
that there are no less blue elements than green ele-
ments.

Case 1. There exists a green element in UL, C;. With-
out loss of generality we may assume that there is a
green element in Cj. Since more than §/4 + d ele-
ments are colored blue, there exists a blue element
not in C3 U D3 U D3, and the assertion of the lemma
holds.

Case 2. All green elements are in U}, D;. -Without
loss of generality we may assume that there is a green
point in D,. Since more-than b/2+ 2d elements in B
are colored and no green element is in C; U C,, there
is at least one blue element in Cy U C;. Thus, the
assertion of the lemma holds in this case, too. [m}




Theorem 3.4 $n > 0.27Tn + O(1).

Proof. Let I be an arbitary indexing function. Sup-

pose that s(I) < 0.27n. Consider two sets A; =

I71([0.21n?,0.79n?]) and A4, = I1([0.395n?,
0.605n?]). By Lemma 3.1(a), for every sufficiently
large n, A; C B;, where B; = CENT(z;,m), z; =
0.622 and z; = 0.3812 (recall that m = n — 1). Re-
gions B; and other regions we will consider in the
proof are shown in Fig. 3.2.

AN
'[ ) }
2 a . e PP
z,m
N\
4 d )z
N 7
By
N Ve
Q NV

Figure 3.2. Regions for the proof of Theorem 3.4

Let B = B; — By and | = 0.1123024. Color all el-
ements in I7([0.21n?%,0.395n%]) in blue and all ele-
ments in I71([0.605n2,0.79n?)]) in green. Altogether,
there are 0.37n? + ©(1) colored elements. These
colored elements must be located in B;. At most
|Ba| — (0.21n%) + ©(1) of them can be located in
B;, as A; C B; and [4,] = 0.21n? + ©(1). Since
|Ba| = 2(zam)* + ©(m) = 2(zyn)? 4+ O(n), at least
0.2893n? + ©(n) of the colored elements are located
in B. In particular, it follows that B contains both
blue and green points. Observe that |B| = 2(zym)*—
2(zem)? — 4(zym — m/2)? + O(m). Denote by d the
common cardinality of regions D; and observe that
d = V2l(zy — z;)m® + ©(m). Hence, the number
of colored elements in B is bigger (for sufficiently
large n) than |B|/2+ 2d. Thus, by Lemma, 3.3, there
are both blue and green points in one of the regions
H; (see notation of Lemma 3.3), say in H3. Con-
sider now set A; = I7}([0.395n2,0.605n2])). It has
0.21n% + ©(1) elements. All of them belong to B,.
Notice, that the cardinality of the region EFGH is
given by (z2m)? + v/2lzym? + ©(m) and thus it con-
tains at most 0.206n? + ©(n) elements. Therefore,
for every sufficiently large n, there is an element in

Aj that belongs to B;-EFGH. Let R be the corner
region determined by the line PQ and containing Hj.
It follows that the longest chain in R has length at
most 0.395n + ©(1). Thus, s(R) > 0.27Tn +0(1), as
required. u]

Remark. The values for z,, z; and ! where found by
maximizing formulas similar to the one that appears

"in the proof of Theorem 3.2. Since in the case of the

proof of Theorem 3.3 the formulas used (and their

. derivations) are much more complicated, we decided

not to include them into the proof and only use the
values 1, r2 and [ these formulas imply.

We conclude this section with a theorem being a
corollary of Theorems 2.1 and 3.4. )
Theorem 3.5. No matter what indezing function is

used, any algorithm for sorting n? items on a mesh-
connected computer takes at least 2.27n+©(1) steps.

4. Limit of the chain argument

The key element of the arguments of the preced-
ing section is the Chain Theorem. In this section
we study the power of the chain argument. It turns
out that the best lower bound we can hope to ob-
tain using this type of an argument is 2.5n + ©(1).
To justify this claim we will construct an indexing
function I with s(I) < 0.5n + ©(1).

Before we define a suitable indexing function let
us note that the sets CREGo((4, 5), [m/2]), fori,j €
{0,m}? and CENT([m/2]) from a partition of the
set of all processors. For brevity, we denote CREG,
((3,7),[m/2]), for ¢,5 € {0,m}* by A;; and CENT
([m/2]) by C. Let a = |A;| (it does not depend on
7 and j) and ¢ = |C|. Let us assume now that an
indexing function I satisfies the following require-
ments:

(1) Processors in Agg (resp. Aq,) will be assigned
odd (resp. even) integers from {1, ...,2a}, pro-
cessors in C' will be assigned elements from
{2a + 1,2a + 2,...,n? — 2a}, and processors in
Amo (resp. Amm) will be assigned odd (resp.
even) integers from {n? — 2a + 1,n? — 2a +
2,...,n%}.

(2) For every z = My, j1] and y = M[iz, j2|,
(a) If z and y are both in Agg or in 4, and
13 — j1 < i3 — ja, then I(z) > I(y).
(b) If z and y are both in A, or in Ao and
i1+ j1 < ia + ja, then I(z) > I(y).
(¢) If z and y are both in C and i; < 43, then
I(z) < I(y).

An expample of an indexing function satisfying re-



quirements (1) and (2) (for n = 9) is given in Fig.
4.1. Tt is clear that indexing functions satisfying (1)
and (2) exist for every positive n.
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Figure 4.1. An indexing scheme

Theorem 4.1. If an indezing function satisfies re-
quirements (1) and (2), then s(I) = 0.5n + O(1).
Hence, s, < 0.5n + O(1).

Proof. To prove the theorem, we show that no mat-
ter what corner region R = CREG((4,7); z) is used,
s(R) = z — t(R) < 0.5n + ©(1) We consider first
the case 2, 3 and 4, the elements contained in the
interior of region B indicated with the bold line in
Fig. 4.2(a), (b) and (c), respectively, form a chain.
(In this figure, we assume that top leftmost corner
contains M[0,0] and top rightmost corner contains
processor M[0,m].)

The length of this chain is equal to |B|+ ©(p), where
| B| is the area of the polygon B and p is the perimeter
of B. (Note that in (c) B is the union ot two interior-
disjoint convex polygons.)

1. 0 < z < 0.5m. In this case s(R) < z < 0.5m,
as required.

2. 0.5m < z'< m. In this case, (see Fig. 4.2(a))
|B| = 3b?/4 and p = ©(b), where b = & —0.5m.
Hence, t(R) = b\/?:/—2+ ©(1). Since 0 < b <
0.5m, s(R) = z — t(R) < 0.5m + ©(1).

3. m < z < 1.5m. In this case, (see Fig 4.2(b))
|B| = (2m?—2bm—b%)/4 and p = O(m), where
b= 1.5m —z. Since 0.1875m?+©O(m) < |B| <
0.5m?, s(R) = 1.5m—b—/(2m? — 2bm — b2)/2
+ ©(1). As 0 < b < 0.5m, also in this case we
have s(R) < 0.5m + ©(1).

4. 1.5m <z < 2m. |B| = 0.75m? + (z — 1.5m)?/2
and p = O(m). |B] > 0.75m* + ©(m) so,
8(R) = 1/0.5m? — (z — 1.5m)? +2 — 2m+0O(1).
Since, 1.5m < z < 2m, s(R) < 0.5m+0(1) fol-
lows.

In the other three cases for the corner we consider
identical subcases and get the same formulas for #(R)
and s(R) as in the corresponding subcase for the cor-
ner (m,m). This completes the proof. O
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Figure 4.2. Chains formed in regions
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5. Concluding remarks

In the note we investigated parameter s, that
arises when proving lower bounds for sorting on a
mesh-connected computer using the Chain Theorem.
We showed that 0.27n + ©(1) < s, < 0.5n + ©(1).
The gap between the bounds is still quite big and
leaves room for the improvement. Improving the
lower bound on s, (we believe that it can be im-
proved) would give a better lower bound for sorting
on a mesh-connected computer. However, even the
bound we were able to obtain indicates that, unlike in
the case of 1-dimensional mesh-connected computer,
in the 2-dimensional case the simple distance based
lower bound cannot be achieved. The.upper bound
on s, which we proved by exhibiting a class of in-
dexing functions I with s(I) = 0.5n+©(1) shows the
limit of the Chain Theorem in proving lower bounds.
Although the Chain Theorem is strong enough to
prove optimality (up to the leading term) of the 3n-+
o(n) algorithm of Schnorr and Schamir [SS], it seems
unlikely that an indexing function exists that would




admit a sorting algorithm running in (3 — &) + o(n)
steps. So, in general, stronger lower bound tech-
niques are needed.

Another interesting problem is to improve the
upper bounds for various indexing schemes. Even
for the row-major indexing scheme we do not know
whether there exists an algorithm sorting in less than
4n steps (the lower bound following from the Chain
Theorem is 3n + ©(1)). This problem seems partic-
ularly worth of future studies.

Recently Kunde also showed a lower bound of
0.25n on s, [K3]. However, our lower bound of 0.27n
on 8, is still the best one known. Using a more

complicated indexing scheme we can show an upper

bound of 0.46n on s, [HIT2].
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