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On characterizations of presorted sequences
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We introduce the concept of (k, p)-sortedness as a measure of presortedness of integer sequences. It is a natural
extension of k-sortedness introduced by Igarashi and Wood. Two types of necessary and sufficient condition for the
(k, p)-sortedness are given. One is a local characterization and the other is a recursive characterization. We also
describe a matrix representation of the (k, p)-sortedness.



1. Introduction

In some applications of sorting, sequences may
roughly or nearly sorted in some sense.  In [4],
Igarashi and Wood defined the roughly sortedness
of sequences of integers. A sequence of integers
a = (a1,a2,--+,a,) is k-sorted if § + k < ¢ implies
a; < a;, where k is a nonnegative integer.  There
are several other measures of nearly sortedness[3,6,7],
but those are different from roughly sortedness. In
[6], Mannila studied several measures of presorted-
ness and optimal sorting algorithms for such pre-
sorted sequences. In this paper, we introduce a
presortedness measure called (k, p)-sortedness which
is an extension of the k-sortedness, and give some
characterizations of (k,p)-sorted sequences. Then,
we derive some basic properties. Our characteriza-
tions are classified into two categories, omne is a local
characterization and the other is a recursive charac-
terization. In the local characterization, we are
mainly concerned with the block size for a (&, p)-
sorted sequence.

Definition 1.1. A sequence o = (a1, as,--*,ay)
of integers is (k,p)-sorted if for any 4,5 such that
j+k <1, a;+p< a; where k and p are nonnegative
integers.

Definition 1.2. Let o = (a1, a2, -+, a,) be a se-
quence of integers. Let V be the set of values in a.
The incidence matriz M (o) of « is the matrix whose
rows correspond to positions in o and columns cor-
respond to values in V in increasing order, and (3, 5)
element of M(a) is 1 if a; is the j-th value of V and
otherwise 0.

Example 1.3. o= (3,5,1,7,2)
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Example 1.4. o =(1,3,2,3,3,1)
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Fig. 1.2

When p = 0, the (k,0)-sortedness is equivalent
to the k-sortedness in [4], and therefore the (k, p)-
sortedness is an extension of the k-sortedness.

Proposition 1.5. For p > ¢/, if a is (k, p)-sorted,
then o is (k,p')-sorted. For k > k', if o is (k',p)-
sorted, then « is (k, p)-sorted.

Definition 1.6. Given a sequence a = (aj,ds,
-++,ay), a nonnegative integer b, and an integer ¢,
1<i<n—>b+1, the b-block of & at position iis the
subsequence (a;," -+, Gi4p—1) of . A b-block of ais a
b-block at some position i.

2. Characterizations of (k,p)-sorted
sequences

2.1. Local characterization

In [4], alocal characterization of the k-sortedness is
given and it says that a sequence & = (a3, az,***, dn)
is k-sorted if and only if every (2k + 2)-block is k-
sorted.

This characterization can be extended to be alocal
characterization of the (k,p)-sortedness. We obtain
the following property.

Proposition 2.1. A sequence & = (a1,a2,"**,Un)
is (k, p)-sorted if and only if every (2k + 2)-block of
« is (k, p)-sorted. The value (2k + 2) is optimal for
the local characterization of the (k, p)-sortedness.
Proof. If « is (k, p)-sorted, then any block of « is
(k, p)-sorted.

Conversely, let us assume that every (2k+2)-block
of a is (k,p)-sorted. Let us define an order relation
<, on any (2k + 2)-block as follows. a; <, g; if and

_only if a; + p < a; whenever j + k < i. Then this

relation <, is transitive, and therefore o is (k,p)-
sorted. ‘

It can be verified by the following sequence that
(2k + 2) is optimal. Every (2k + 1)-block of the se-
quence is (k, p)-sorted, but o is not (k, p)-sorted. O
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We can also give an example of o with all distinct
elements that shows the optimal size to be (2k + 2)
as follows.
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When o = (ay,d3,+--,a,) is a permutation of n

consecutive integers, the situation differs. Since any
n consecutive integers can be adopted, we assume

that « is a permutation of 1,2,+++,n. In the rest of
Section 2, we assume that o = (aj,ag,+++,a,) is a
permutation of 1,2, ---, n unless stated otherwise.

Lemma 2.2. Ifa = (aj,az,--+,a,) is (k, p)-sorted,
thenp<k+1, where 0< k <n-—2

Proof. Contrary assume that p > k + 2. By the
assumption, if 1+ k£ < ¢, then a; + p < a;. Since
a; > 1, a; > p+ 1. There are (n — k — 1) positions
for such a;, but there are n — p(< n — k — 2) values
to be selected. This is a contradiction and we have
shownthat p<k+1. O

When o = (aj,a0,%++,a,) is a permutation of
1,2,---,n, (2k + 2) is also the optimal size of
the blocks for the local characterization of (k,p)-
sortedness for p = 0,1 and 2.

The optimality of (2k + 2) for p = 0,1 and 2 is
shown by the similar example as in Fig 1.4.

For p > 3, the optimal size of the blocks for the local
characterization of the (k, p)-sortedness of a sequence
may be reduced as in the following results.

Lemma 2.3. Let3<p<k+landn>2k+2. If
every (2k +4 — p+t)-block of @ = (ay, a3, -+, a,) is
(k, p)-sorted, then every (2k + 5 — p + t)-block of o
is (k, p)-sorted, where 0 < ¢t < p — 3.

Proof. From the assumption,

a+p < dgio » A2kt 4mptt

az+p < apss, s G2k+5—p+t

Ongk—ttp—t + 0 < Onok-zgp—t; *** 5, Gn-1 (1)
Op—2k—34p—t TP < Onek—24p—t; *** , Qn
Qpep—1+ P < an

In order to prove the lemma, it is sufficient to show
that

a+p < Gokt5-ptt
az+p < Gokt6—pit )
Ap—2k—4+p—t + D S Q.

Let us contrary assume that at least one inequality
in (2) does not hold. Let the last inequality in (2)
which does not hold be the z-th one . Then we have

Ozt 2k+a—ptt < Gz + P,

1<z<n—-2k—4+p—t. (3)
From (1), aokta-pts > G14P, G2+ D, Gpgz—pie +P-
Therefore we have

Ookta—ptt = K+ 341 )
Similarly we have

A2k +5—ptts* "y n >k + 3+ 1 (5
Since Gakis5-p+t > dok+a—p+e + P, We have

A3k45-ptt = b+ 3+1+p. (6)
Similarly,

Q3k46—pits " "y 0n 2 k+3+1+p (7
In general,

2k +3—ptt+s(k+1)+1) * * " 3 B2kt3—p+i+(s+1)(k+1)

>k+3+t+ps, (8)
where

s=0’17...,|_%]_1=1\[‘
When (k + 1) does not divide (n —2k — 3+ p —t),

A2k +3—p+tH(N+1)(k+1)+1) """ On

>k+3+t+p(N+1). 9)

Let us assume that
2k4+3—p+t+se(k+1)+1<z+2k+4—p+t
<2%+3—p+t+(so+1)(k+1).

Then
Gryokti-ptt > k+ 3 +1 + pso.

From (1) and (3},

Ozt 2k44—p+t < Qotk+1y "y Cod2k+3—ptt-

There are at least (k+ 3 — p+t) terms greater than

Gz42k+4—p+t, and we have

(10)

Oztokts—pte SN—k~3+p—t. (11)
From (10) and (11),

k+3+1t+pso < Gopartampit

<n—k—3+p—t. (12)
Now, let

Gryokra—ptt =k + 3+ 1+ pso + z, (13)

0<2z<n—2(k+3+1t)+p— pso-

Since ag41,°7,0z4k+3—p+¢ are less than or equal
t0 Gzyok4a-ptt — P, at most (pso + z) terms in
{aly G2y Ox—15 Qotk+i—pity " " an—k—l} can be less

than or equal to {k + 3+t + p(so — 1) + 2z}. Then
in the right hand side of inequalities in (1), at least
(n—k—2—pso—z) terms in {ak42, "'+, Gus2kt3—pte,
Gy42k+5—ptt) ", On} are greater than {k +3 +1¢ +
pso + z}. While there are n — {k + 3 + ¢ + psg + z}
integers greater than {k + 3 + ¢ + pso + z}. Since
{n—(k+3+t+pso+2)} < {n—(k+2+pso+2)},
this contradicts the assumption that ag,---,a, are
distinct. Hence, every (2k + 5 — p + t)-block of o is



(k,p)-sorted. O

By Lemma 2.3, we can prove the following theorem
including the case for p = 2.

Theorem 2.4. Let 2<p<k+1landn>2k+2
a = (a1,a2,- -, as) is (k,p)-sorted if and only if ev-
ery (2k + 4 — p)-block is (k,p)-sorted. The value
(2k + 4 — p) is optimal for the local characterization
of the (k, p)-sortedness.

Proof. The first half is a direct consequence of
Lemma 2.3. The second half is shown by the fol-
lowing example, where every (2k + 3 — p)-block is
(k, p)-sorted, but every (2k+4—p)-block is not (k, p)-
sorted.
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2.2. A hierarchy of local characterizations of
(k,p)-sorted sequences

In the previous section, we have investigated the
problem of the optimal value of the block length for
the local characterization. In this section, we will
give another local characterization.

Definition 2.5. Let o = (aj,a2, ***,a,) be a se-
quence of integers and T' = {B;, By, -+, B} a set
of blocks of a. T is called a (k,p)-covering of o if
the (k, p)-sortedness of each element of I' implies the
(k,p)-sortedness of . '

Lemma 2.6. Let 2k +2 < nand 2 < p <
kE+ 1. A set of blocks T' = {B;, Bz,*+,Bn} of
a = (a1,as,+,a,) is a (k,p)-covering of « if and
only if every (2k + 4 — p)-block of « is included in
some element of T

Proof. If every (2k + 4 — p)-block of a is included in
some element of T, then (k, p)-sortedness of each ele-
ment of I' means (k, p)-sortedness of each (2k+4—p)-
block of o and by Theorem 2.4 « is (k, p)-sorted.

To prove only if part, let us assume that there is a

(2k+4—p)-block of a which is not included in any el-
ement of T. Then (k, p)-sortedness of each element of
T' dose not mean (k, p)-sortedness of each (2k+4—p)-
block of . Therefore, & may not be (k, p)-sorted and
T' may not be a (k,p)-covering of . I

Now we will consider a problem of the periodic lo-
cation of blocks of a covering of a sequence.

Definition 2.7. A set of blocks I' = {By, B,
-++, By} is said to be of period B8 if B; is a block
located at 1 + (i — 1)8. A set of blocks T
{B1,B;,: -+, B} of period f is said to be of length
« if every block possibly except for the last one is of
length v and when the last one is excepted, it has
length smaller than .

Lemma 2.8, Let 2<p<k+1land2k+2<n.
A set of blocks I' = {By, By, -+, Bn} of «
(a1,a2,+++,a,) of period B and length 7 is a (k,p)-
covering of « if and only if every a; is contained in at
least one element of I’ and |B; N B;y1] > (2k+ 3 —p)
foreach1<i<m-—1 where 8> 1and v> 2.
Proof. If I' = {By, By,*+, Bn} is a (k, p)-covering
of a, then every (2k + 4 — p)-block of « is included
in some block. Therefore | B; N B;y1| > (2k + 3 = p).
Conversely, if | B; N Bi41| > (2k + 3 — p), then every
(2k + 4 — p)-block is included in some element in T’
and T is a (k, p)-covering of . O

Theorem 2.9. Let 2<p<k+1land 2k+2<n.
a = {ay,as,*-+,a,)is (k, p)-sorted if and only if each
block of a set of blocks I' = {By, Bs,--+, B} of pe-
riod 8 and length (2k + 3 — p + f) is (k, p)-sorted,
where B > 1. The value (2k + 3 — p + f3) is optimal
for the period f£.

Proof. If ais (k, p)-sorted, then every (2k+3—p+73)-
block of « is (k,p)-sorted. Hence, By, Ba,--+,Bn,
are (k,p)-sorted. If every block of I is (k, p)-sorted,
then every (2k + 4 — p)-block of « is (k, p)-sorted,
since |B;N Biy1| > (2k+3—p)for 1 <i<m—1
Hence, o is (k, p)-sorted. If the length is smaller than
(2k+3—p+ ), then there exists a {2k+4—p)-block of
« which is not included in any element in I'. There-
fore, the value (2k +3 —p+ f) is optimal. 03

2.3. Recursive characterization

When o = (a1, az, *--,a,) is (k, p)-sorted, we de-
fine a subsequence «; of o as follows;

o = (i, Qi1 Git2(k+1) " ° D}
where 1 <i<k+1.
Then o; is a completely sorted sequence.
Represent each o; (1 < i £ k + 1) on a straight
line segment and join a, and a; when s + k£ < ¢t and
delete redundant lines. The resulting reduced rep-
resentation is called the periodic representation of a
and denoted by N7, (@). An example of N} (o) is
shown as follows.




Fig. 2.4
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A subset N (o) of NP (o), 1< kand1<i<
k+1,is defined as follows.

Ni (1) = NP (o) — o
" The subsequence of o defined by N (o 1) is denoted
by (7).

Proposition 2.10. Let n > 2k + 2. If «
(a1,a2,++,a,) is (k,p)-sorted (k > 1), then afi) is
(k — 1,p)-sorted for any 4,1 < i< k + 1.

Proof. Omitted.

From this property, we can obtain two kinds of re-
cursive characterizations for the (k, p)-sortedness.

Theorem 2.11. Let n > 2k+2. o = (a1,a,**+, ay)
is (k,p)-sorted (k > 2) if and only if for any i,1 <
i <k+1, every oz) is (k — 1,p)-sorted.

Proof. Omitted.

Theorem 2.12. Let n > 2k + 2. o = (a,ay,
-+, 0,) is (k,p)-sorted (k > 1) if and only if a(1)
and a(k + 1) are (k — 1,p)-sorted and the following
conditions are satisfied;

(i) for any element a, in o, the element a 42541 In
a4y satisfies a, + p < a,42141,

(ii) for any element a; in o41, the element aiixy2 in
o satisfies a; + p < Gryrta-

Proof. Omitted.

Now, we define a subset N7, (a;4,7) of Ni, () as
a periodic subrepresentation of Ni, (a) induced by
@i, Qiy1, -+, &, where'l < ¢ < j < k+1 When
i = j, Ni,(a;1,7) is denoted by N7, (e;i). From
Theorem 2.12, the recursive structure of N7 () is
shown in Fig. 2.5.

3. Classification of (k,p)-sorted
sequences

Through this section we assume that o
(a1,a2,+++,a,) is a permutation of 1,2,-++,n.

Proposition 3.1. Let 0 < k < [3n] — 1. If a se-
quence o = (a1,dz,*+,ay) is (k, k + 1)-sorted, then
« is completely sorted.

Proof. Contrary assume that o is not completely
sorted. Then there exists an integer j such that
a; # j. Let j be the smallest one satisfying the con-
dition. Then a; > jand a; =dforall1<i<j. If
1§j§%n, thena, >a;+k+1forall s> j+k.
Number of such elements is (n — a; — k). From the
definition of (k, k + 1)-sortedness, (n — a; — k) is at
least (n— j — k). Therefore, n—a;—k>n—j—k.
Hence, we have a; < j. This is a contradiction. If
j > 3n, then there is an integer ¢ > j such that
as < t. Let t be the smallest one satisfying the condi-
tion. If ¢ > j+k, then a, satisfies a; > ag——1+(k+1)
>{t—k—1)+ (k+1)=¢ Thisis a contradiction.
Ifj <t < j+k, then g, satisfies a; > a;_r—1+(k+1)
= (t—k—1)+(k+1) = t. Thisis also a contradiction.
Hence, « is completely sorted. O
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For k > [1n], we need more definitions.

Definition 3.2. A sequence a = (a,az, **+,a,) is
(c1,¢2)-periphery sorted, if for each i (1 < i < ¢;) and
j(n—c2+1<j < n) we have a; = i and a; = j,
where ¢; + ¢ < n. When ¢ = ¢; = ¢, o is said to
be c-periphery sorted.

Proposition 3.3. If a sequence & = (a1, ag, ***,ay,)
is (k, k + 1)-sorted, where |in| <k <n—1, then a
is (n — k — 1)-periphery sorted.

Proof. If an element @; has an element to be com-
pared, then i+ k+1<nori—k—12> 1. Therefore
1<i<n—k—-lork+2<i<n.
If1<i<n-—k—1, then for any j > i+ k, we have
a; > a;+k+1. The number of elements greater than
or equal to a; + k + 1 is (n — a; — k) and this is at
least n—i—k. Then we have n—a; —k >n—i—k.
Hence, a; <iforalli, 1<i<n—k-—1

Therefore, a; =i foralli, 1<i<n—k—1.
Similarly, @; = jforall j, k+2<j < n.

Hence, a is (n — k — 1)-periphery sorted. 0O

Definition 3.4. A sequence o = (a1,4az, *++,a,) is
said to be (1, s2;d)-semideviation sorted if for s; < 4,
i—a; < dand for j < n—s;+1 g, —14 < d.
When s; = s, = s, o is said to be (s5;d)-semideviation
sorted.

Proposition 3.5. Let 0 < k < |in] — 1 and
1< p<k+1 Ifasequence @ = (as,as,-++,a,) is
(k, p)-sorted, then a is (k+1; k+1—p)-semideviation
sorted. )

Proof. For any i, ¥+ 1 < i < n, term ¢; has a term
to be compared on the left. For any ¢, ¢t + k < %,
a: +p < a;. The number of integers less than or
equal to a; — p is a; — p, and this is not smaller than
i—k—1 Then we haveg; —p>i—k—1.
Hence, i —a; <k+1-p

Similarly, for j < n — k&, we havea; —j <k+1—p.
Therefore, o is (k + 1,k + 1 — p) semideviation
sorted. 0O

Definition 3.6. A sequence o = (a1,4az, +**,a,) is
said to be d-semideviation (c1,cz)-periphery sorted if
for1<i<c,g;—i<dandforn—c;+1<j<n,
j—a; <d

Proposition 3.7. Let |in] < k < n—1 and
1<p<k+1 Ifasequence a = (ay,az,**,0n)
is (k,p)-sorted, then « is (k + 1 — p)-semideviation
(n — k — 1)-periphery sorted.

Proof. Foranyi, 1<:<n-—k—1, the term g; has
an element to be compared on the right. For any ¢
such that i+ & < ¢, we have a;+p < a;. The number
of terms larger than or equal to a;+pis (n—a; —p+1)
and this is at least (n — k — 7).

Hence,a; —i<k+1-—p

Similarly, for any j, £+ 2 < j < n, we have
j—a;<k+1-—p

Therefore a is (k+ 1 —p)- semideviation (n k—1)-

periphery sorted. O

Definition 3.8. A sequence a = (ay, a3, -+, ay,) is
d-deviation sorted if | a; — i |< d for any i.

A sequence «a is d-deviation, c-periphery sorted if for
i,21<i<cand jn—c+1< j < n we have
la;—i|<dand|a;~j|<d

Proposition 3.9. For p =
properties are valid;

(i) for 0 <k < [3n] —1,if & = (as,a2,+++,0,) is
(k,p)-sorted, then « is k-deviation sorted,

(i) for {3n] < k < n—1,if o is (k,p)-sorted, then
« is k-deviation, (n — k — 1)-periphery sorted.
Proof. (i) Since o = (ay, az, *+,a,) is a permuta-
tion of (1,--+,n), a; # a; whenever 1 # j. Therefore,
a; < a; whenever j+k < 7is equivalent to a;+1 < g;
whenever j + k < i. Hence, we assume that p = 1.
For any ¢, k+1 < i < n, the term a; has a term to be
compared on the left. For any ¢ such that ¢ + k < ¢,
a¢+1 < a;. Number of integers less than or equal to
a; — 11is a; — 1 and this is not smaller than : — k — 1.
Then we have a; —1>i—k— 1.

Hence, i — a; < k.

Forany i, 1<i<k+1,i—a; <i—1< k since
a; > 1.

Therefore, for any 1, 1 < i< n,1—a; < k.

Similarly we can show that a; — ¢ < k for any i,
1 £ ¢ < n. This implies that « is k-deviation sorted.
(i1) Similarly proved as in (i). O

0 or 1, the following

Results in section 3 are resumed in Fig. 3.1.
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