FOUTY XA 92
(1989. 7 27)

BIRIKICE T BFRBROERT7IVTU X ia

FE R HH ES
RRIEART I3 BR - BEFI%#H

HoEL:

BFUSRAERBMBE L — “335xohcZMpicxdl<. GF(p) ORISR g2 KT 2 — LR S D, —
R FUSIRABREEAR p| BT 25 HAXBMS 5 VA PHNSHABMTRB CEHTERVETFHREATY
B0 UTARTR., RERERMBIM T 3BRBH 7TV) XLERBL, TOEEHE — FIAREEKRT 3 HE,
THEITHE, BNSh3TORNMMIBRUTEHEEK — K>OWTHRITT 5, $h. ChooBIRERLD. 515
NEZBp LT AR TRETARBAHT AT Y X o, PRECES 1-|pl™* (kB3 HAK ULOoBR TR
BRSTEAER L. ET0ETHMR., PHAZHEAKE TS LEZHOMIET S, Chibh, AEEH T AT Y X
LARMBHECFEBREER L. 2L ChRELNRN T b v X742 %H T3 —FHEE2E2200EE2 003,

How to Generate'a Primitive Root Modulo a Prime

Toshiya Itoh Shigeo Tsujii

Department of Electrical and Electronic Engineering,
Faculty of Engineering,

Tokyo Institute of Technology

O-okayama, Meguro-ku, Tokyo 152, Japan

Abstract:

Generation of a primitive root modulo a prime is a problem that given a prime p, generate a primitive root g modulo
a given prime p. In general, it is conjectured and believed that this can not be solved in polynomial or random
polynomial time in |p|. This paper presents a randomized algorithm for generating a primitive root modulo a prime,
and analyzes several properties of the randomized algorithm such as the probability that the randomized algorithm
generates a primitive root modulo a given prime, the expected running time of the algorithm, the maximum lower
bound for the order of the output ¢ € Z;, and the expected order of the output g € Z,. As a result, for a given
prime p, the randomized algorithm generates a primitive root g modulo a prime p with probability at least 1 — |p|~*
for some integer k and runs in expected polynomial time in |p|. Thus the >randomized algorithm efficiently generates
a primitive root g modulo a given prime p and this provides us one of the ways to design secure cryptographic

protocols and systems.

i
It

1 Introduction

Generation (or recognition) of a primitive root modulo a prime is a simple but is supposed to be an intractable
problem in number theory. (e.g., see C18 and C19 in [1], or see 4.3 in {5].) A solution to this problem, i.e., to
find an eflicient algorithm for generating (or recognizing) a primitive root modulo a prime, enables us to design
secure cryptographic protocols and systems such as the public key distribution system by Diffie and Hellman [3],
the public-key cryptosystem by El-Gamal (4], etc.

Informally, “recognition of a primitive root modulo a prime” is a problem that given a prime p and any g € Z;,
recognize whether or not g € Z; is a primitive root modulo a prime p, and “generation of a primitive root modulo
a prime” is a problem that given a prime p, generate a primitive root g modulo a prime p. In this paper, we use
GPR (RPR) to denote “generation (recognition) of a primitive root modulo a prime” for notational simplicity.
It is already known that if every prime factor of p — 1 is given, RPR is solvable in polynomial time in |p| (e.g.,
sce Rem18 in [1].), where |z| denotes the length of a binary encoding of an instance z, and if RPR is solvable in
{random) polynomial time in |p|, GPR is also solvable in random polynomial time in |p|. (e.g., see Rem19 in [1}.)
In a usual case, however, it is difficult to find every prime factor of p — 1 [8], then we have the following simple and

naive open problem:

Open Problem: If every prime factor of p — 1 is not known, can RPR or GPR be solved in polynomial or

random polynomial time in n(= |p|)?

In general, it is conjectured and believed that the answer to the Open Problem is “no.” (see 4.3 in [5].) If this
conjecture is true, then we have no way to generate (or recognize) a primitive root modulo a prime p in polynomial
or random polynomial time in n(= |p|). Then we may need a more relazed setting, somewhat in a practical sense,
for generating (or recognizing) a primitive root modulo a prime. An informal description for our setting is; (1) we
are allowed to use at most polynomial or random polynomial time computing resources, and (2) an algorithm for a
given problem correctly answers with high probability.

In this paper, we present a random polynomial time algorithm Agpg for solving GPR with high probability, i.e.,
given a prime p, the algorithm Agpp correctly generates a primitive root ¢ modulo a prime p with high probability
in random polynomial time in n = |p|. It is worth noting that the algorithm Agpr generates a primitive root modulo
a prime p with high probability in random polynomial time in |p|, but does not necessarily generate the same one
in each execution of the algorithm, and that “high brobability” is in a sense of not 1 — 2~9UPD but 1 — |p|=2),

The outline of this paper is as follows: After some preliminaries, section 3 presents a randomized algorithm
Agpr for generating a primitive root modulo a prime. Sections 4 and 5 analyze several properties of the algorithm
Agpr such as the probability that the algorithm Agpg generates a primitive root g modulo a prime p, the ezpected
running time, the maximum lower bound for the order of the output g € Z;, and the expected order of the output
g € Z;, and show that for a given prime p, the algorithm Agppg generates a primitive root ¢ modulo a prime p with
probability at least 1 — |p|=* for some integer k and runs in ezpected polynomial time in |p|. In addition, Section 6

describes conclusion and several remarks, and refers to a further modified problem in a slightly different setting.

2 Preliminaries

In this section, we present a formal definition for “recognition of a primitive root modulo a prime (RPR)” and

a known result for RPR. For notational simplicity, we use PRIME to denote a set of all primes in the rest of this

paper.

Definition 1 (RPR): Given a p € PRIME, for any g € Z;, 1ecognize whether or not g € Z; is a primitive

root modulo a given prime p.

If every prime factor of p — 1 is known, then RPR. can be solved in polynomial time in n(= |p|) by the following

lemma:

Lemma 1 (see Rem18 in [1]): Let p € PRIME and let the complete factorization of p— 1 be of the form that
p—1=pi'py - pi', where p, € PRIME and ¢; > 1 (1< i < t). Then g € Z, is a primitive root modulo a
prime p il g®=D/P £ 1 (mod p) (1 <i < t).

Proof of Sketch: It is not difficult to show the following equivalency: “g € Z, is not a primitive root modulo
a prime p.” ¢ “For some ¢ < p— 1 such that efp— 1, g° = 1 (mod p).” & “For some ¢ € PRIME such that
glp=1,¢%" V=1 (modp)” O

3 Algorithm for GPR (Agpr)

In this section, we give a formal definition for “generation of a primitive root modulo a prime (GPR),” and

present a randomized algorithm Agpp for solving GPR in the case that every prime factor of p—1is not known.
Definition 2 (GPR): Given a p € PRIME, generate a primitive root g modulo a given prime p.

Without loss of generality, p — 1 consists of ¢ distinct prime factors py, pa, - -+, pr, where 2 = p; < py < -+ < De-

Then the description of the algorithm Agpp is as follows:
Algorithm AGPR:

Input: p€ PRIME, where n = |p|.

Step 1: For some integer d > 1, compute every prime factor p; of p—1suchthatp; <n? (1<i<s< t).
€] . €2

(Let the partial factorization of p — 1 be of the form that p—1=p'p? - pS-Q, where 2=p; < p, <

---ps < n? and Q is generally a composite number.)
Step 2: Choose g € Z; randomly, uniformly, and independently.

Step 3: Compute u = {g(”'l)/q - 1} 11 {g(”“)/”" - l} (mod p).
1<igs

Step 4: Ifu# 0 (mod p), then output g € Z; as a primitive root modulo a prime p. Otherwise, go to
Step 2. ‘

Note that the Step 1 of the algorithm Agpg can be carried out in polynomial time in n = |p|, and the integer
d plays a role to control the probability that the algorithm Agppn generates a primitive root g modulo a prime p
and the running time of the algorithm Agpg. In Step 4 of the algorithm Agpp, if u = 0 (mod p), (randomly,
uniformly, and independently chosen) ¢ € Z, is certainly not a primitive root modulo a prime p, because g®=1/7i = 1
(mod p) for some j (1 < j < s), or g”:";""":' =1 (mod p). Thus the algorithm Agpg rejects g € Zy in the case
that u =0 (mod p). Then how probable is the output g € Z, of the algorithm Agpg as a primitive root modulo
a prime p? To solve this problem, the following section precisely analyzes the probability that the output g € Z; of

the algorithm Agpp is really a primitive root modulo a prime p and the running time of the algorithm Agpp.

4 Analyses for Algorithm Agpr

Our goals in this section are to show that the algorithm Agpr generates a primitive root modulo a given prime p
with high probability in a sense of 1 — [p]7°M, and to prove that the algorithm Agpr runs in ezpected polynomial

time in n = |p|.

Theorem 1: Let Ppp be the probability that the output ¢ € Z; of the algorithm Agpn is really a primitive root
modulo a prime p. Then Ppg > 1 — [n/dlogn]n~¢, where n = |p|.

Proof: Let p—1 = p§'pS?---pf*, where p; € PRIME, ¢, > 1 (1 <i<t)and 2 =p; < pa < -+ < p¢.
If every prime factor of p — 1 is known, then the output of the algorithm Acpp is a primitive root modulo a
prime p with probability 1. (see Lemma 1.) If not, then for some integer d > 1, there exists s (1 < s < 1)
such that p, < n? < p,y,. Here we define sets D; to be D; = {a|a® /P =1 (modp), a€ Z;} (1<i<s)
and a set S to be § = {a|a?'?"?¥ = 1 (mod p), a € Z;}. Furthermore, we define a quantity N(n?) to be
N(né) = ||D;UDyU---UD US|, where || A|| denotes the cardinality of a set A, thus,

N(n%)

|DsUD;U---UD,US|
IDrUDU---UD,||+ IS~ (DyUDU---UD)
SUDili- Y WnDill+ Y IDinD;nD:||

i=1 1<i<j<s 1<i<j<k<s
+ (=)D DyN--N D IS = (DU DyU---U D)l

1

Recalling the definition of D; (1 < i < s), then we have

I

D;N D, {ala®>V/PPi=1 (modp), a€Z]} (1<i<j<s),

D:N D, N Dy

il

{alaP=DP#irt =1 (mod p), a€ Z;} (1<i<j<k<s),

DinD,N---nD, = {alg® VPP =1 (modp), a€Z;},
and thus this yields
N(n%) | DyUuDU---UD, || +|IS—= (DyUDU---UD)|
Lp-1 -1 -1 -1

P~ _ Z P + P +...+(_1)"1._.£_..
=1 Pi 1<i<i<s PiPi 1<icj<kgs PiPiPk PPz " Ps
+ [IS=(DyUDU---U D)
21 1 1 1
(rp-1) — - —+ +ot (-1 —
-‘g; pi xgg}g; pips 15.‘<,Z'<k5, PP Pk Pipz° " Ps
+ 1S = (D1UDU---UD)
2 1
(p— 1){1—H (1— ;)}+||S—(D1UD;U~--UD,)||.

=1 '

il

Note that the set S—(DyUD,U---UD,) consists of every distinct (p§' p3? - - - p¢*)-th primitive root of unity modulo
a prime p. (see the definitions of D; (1 <4 < s) and S.) Then the cardinality of the set S —(D;UD;U---U D,)is
given by , , ,

s~y upsu-updl=e{$r} = I 1T (1- 7).
where () denotes the Euler’s totient function. The algorithm Agpr randomly, uniformly, and independently
chooses g € Z; in Step 2, and rejects g € Z; such that u=0 (mod p) in Step 4. On the other hand, there exist

==

¢(p — 1) distinct primitive roots modulo a prime p, hence the probability Ppp is bounded by
plp—1)
Ppp = s
Il Z; It =N (n?)

el (- 3)

DR () B Ty

111 (1-2)

=1 pi

Ise ..I!(l-—) I 11 (1)
= fI (1—1) "’H“pei > ﬁ (1—1)

i=et1 pi H pi—1 = pi

=s+1

Recalling that 2=py < py < - - <p, <p,py < - < P¢, then we have

t t—s
Ppn>H(1——)>H (1—_)=(1—L) .
i=s1 D =s+1 Ps+1 Ps+1

¢ ¢
Sincep>p—1> H P> H Pot1 > pi3) and n? < p,,4, this yields
i=s+1 iZs+1

n=|p| >log(p—1) > (t - s)log p,41 > (t — s)dlogn,

and it follows that ¢t — s < n/dlogn. Then,

t—s n/dlogn
1) N (1_ 1) N (l—n‘d)r"/dh‘"],

Ps+1 Ps+1

Ppp > (1 -
because n? < p,yq, t ~s < n/dlogn, and 0 < 1 —1/p,4; < 1. For any d > 1 and any n > 1, it is not difficult
to show that (1 — n=4)M/dloenl 5 1 _ Iy /d]og n]n™?, and thus we finally have Ppg > 1 — [n/dlog n]n~¢, where
n=[pl. O

The following theorem guarantees that the randomized algorithm Agpg runs in ezpected polynomial time in
n(= |pl).
Theorem 2: The algorithm Agpp runs in expected polynomial time in n{=|p|).

Proof: To show that the algorithm Agpg runs in expected polynomial time in n(= |p|), the probability P,xo
that for any g € Z 5 4 # 0 (mod p) in Step 4 must be analyzed. Since g € Z; is randomly, uniformly, and
independently chosen, P, is. bounded by

" Iz
=-6-0{1-110-#)} - T (1- 1)

p—1

ﬁpi‘ﬁ(l——) HP -H(—l)

i=1 =1 =1 '

[[jem B
—
|
B[
N—r
\%
N =
<
m
el
bl
s
g
n
=2
3
a
=
TN
-
|
|
SN

where PRIME(L) = {q|g € PRIME, g < L}. Noting the result by Mertens [6] that

-3 =izl @)}

where C is the Euler’s constant [6], we have P,zo > e ¢/(4dlogn) for sufficiently large n. Then the ezpected

1
QEPRIME(L) (

iterations of Step 4, 7, is estimated by

= . i-1 1
=3 iPugo {1 — Pugo} ' = P
=1 u#0

and thus, for sufficiently large n and a fixed d > 1, 7 < 4e®dlogn < n. Hence the algorithm Agpg runs in expected
polynomial time in n, because for any integer d > 1, the algorithm Agpg (in a brute force manner) searches every
prime factor p; (< n?) of p— 1 in polynomial time in n = |p|, and evaluates polynomially computable congruences

modulo a prime p. O

5 Analyses for Order of Outputs

In this section, we analyze the order of g € Z; that the algorithm Agpr generates as a primitive root modulo a
prime p. To do this, we prove the maximum lower bound for the order of g € Z; that the algorithm Agpr outputs.
Furthermore, we define expected order with respect to the algorithm Agpr and show that it is large enough. In
general, any g € Z; of large order modulo a prime p provides secure cryptographic protocols or systems (e.g., see

[3], [4].), thus this result is not only of theoretical interest but also of practical importance.

Theorem 3: For any g € Z; that the algorithm Agpg generates as a primitive root modulo a prime p, the order
of g € Z; > pi'p -+ Y Por-

Proof: In Step 4, the algorithm Agpr rejects every g € Z; whose order is divisible by both each divisor of

(p—1)/pi (1 <1< s) and each divisor of pf'p3’ - - - p%*. Thus it can be immediately shown that the least order of

el .2

g € Z; that the algorithm Agpr generates as a primitive root modulo a prime pis p{'p3’ - p¥*psq1. O

Definition 3: The expected order e(n?) with respect to the randomized algorithm Agpp is an ensemble average

over every g € Z, that the algorithm Agpp generates as a primitive root modulo a prime p.

Theorem 4: The expected order £(n?) with respect to the algorithm Agpp satisfies that e(n?) > (p — 1)(1 -
[n/dlog n]n~?).

Proof: In Step 4, the algorithm Agpr rejects every g € Z; whose order is divisible by both each divisor of
(p—1)/pi (1 < i< s)and each divisor of pf'p5? -+~ p2*. Since for vlp — 1, there exist p(v) distinct v-th primitive

roots of unity modulo a prime p, the expected order e(n?) with respect to the algorithm Agpg is bounded by
LPFS) Cr4a .
3 3 SRR A (R pipi - r) - Re(R)
d ie41=0 i542=0 $1=0
e(n?) =
9 ERRIL

Cot1 Cs42

R-piiipidy - pite(R - PP g2

>
2 1
(p—l)—(P—l){l—H(l-—)} H H(l—;)
=1 i=1 v
> R PP - pie(R - p pies Pl)

P‘l)fl(l—ﬁ)
_ (- 1)’w(p—1) _ —1)H (1__)

e-DII(1-2) = P

i=1

<1 C’oo-

where 12 = pf'p3* -+ p%*. Thus we can show, in a way similar to the proof of Theorem 1, that e(n?) > (p— 1)(1 -

[n/dlogn]n~d). O

6 Conclusion and Remarks

In this paper, we presented a random polynomial time algorithm Agpp for generating a primitive root modulo a
prime with high probability. It is worth noting that the randomized algorithm Agpr is also applicable to finding a
generator of GF*(¢™) or to finding a generator of a cyclic group G in almost the same way.

Here we consider a slightly modified setting: For any I > 2, define a set COMP(l) to be COMP(l) = {clc =
pi'ps B, pupacc,m € PRIME, py < py < -+ < py, |e|/|m| < K, for some constant K}. (Informally,
COM P(l) is a set of composite numbers with [distinct prime factors, each of which is large enough.) Then we have

a modified problem, i.e., modified generation of a primitive root modulo a prime (MGPR), in the following:

Problem (MGPR): Assume that c € COMP(I) (I > 2) and g is the least prime in an arithmetic progression
fe+1(f > 1). Then for any c € COM P(l), generate a primitive root g modulo a prime q.

A problem similar to the above arises in [10] to demonstrate possession of two factors in a zero-knowledge manner.
Dirichlet’s theorem (see Theorem 15 in [6].) guarantees that for any ¢ € COM P(l), there exist infinitely many
primes in an arithmetic progression fc+ 1 (f > 1). Though the least prime q(= fuimc + 1) in an arithmetic
progression fc+ 1 (f > 1) is proved to be g < c?/(logc)* for every k > 0 (see p.218 in [9].), Heath-Brown’s
conjecture [7] gives us a strong bound that claims f,.;, = O(|¢|?). Thus, with Heath-Brown’s conjecture, we can use
Agpr as a building block to solve MGPR in random polynomial time in |c| with overwhelming probability, i.e.,

with probability at least 1 — 270UeD,

Algorithm Apgpr:

Input: c¢e€ COMP(l), where | > 2.

Step 1: Find the least prime ¢ in an arithmetic progression fc+ 1 (f > 1) in a brute force way using a
random polynomial time primality testing algorithm [2].

Step 2: Input (randomly, uniformly, and independently chosen) g € Z; and a prime g to the algorithm
Agpr.

Step 3: Ifu# 0 (mod g), then output g € Z; as a primitive root modulo a prime g. Otherwise go to
Step 2.

Noting that ¢ = fininc + 1 and ¢ € COMP(I), we have ¢ ~ 1 = frnin¢ = frninp3'pg - pf'. Thus if Heath-Brown’s
conjecture is true, then the complete factorization of fmi, can be found in polynomial time in |c|. Here we use

Pcompqy to denote the probability that the output g € Z4 of the algorithm Apygpg is really a primitive root modulo

Pcomp(ry li[(l—~1—_)>]£[(l—i)=(1_i)'>1_i

i=1 g i=1 P p1
1—1.27losPr 5 1 2=0UpiD 5 7 _ 9=OUeh)

a prime g, then

I

because py < p; < --- < p and |c|/|pi| < K for some constant K. Thus we can show in a way similar to the above
that for a set COMP = UCOMP(I), Poomp > 1— 2-0UeD, where Ppopp denotes the probability that for any
¢ € COMP, the output ;1226 Z; of the randomized algorithm Apygpr is really a primitive root modulo the least
prime ¢ in an arithmetic progression fc+ 1 (f > 1).

Acknowledgment: The author wishes to thank Osamu Watanabe of Tokyo Institute of Technology for showing
me the outline of this paper and giving me several technical comments on this work. The author would also
like to thank Hiroki Shizuya of Tohoku University and Mitsunori Ogiwara of Tokyo Institute of Technology

for their suggestive comments and valuable discussions on the eatly version of this paper.

SE 3R

[1] L.M. Adleman and K.S. McCurley, “Open Problems in Number Theoretic Complexity,” Perspectives in Com-
puting, Vol.15, Discrete algorithms and Complexity, Academic Press (Proceedings of the Japan-US Joint Sem-
inar), 1987, pp.237-262.

{2] H. Cohen and H.W. Lenstra, Jr., “Primality Testing and Jacobi Sums,” Math. Comp., Vol.42, No.165, 1984,
pp-297-330.

[3] W. Diffie and M.E. Hellman, “New Directions in Cryptography,” IEEE Trans. on Inform. Theory, Vol.IT-21,
No.6, November 1976, pp.644-654.

[4] T. El-Gamal, “A Public-Key Cryptosystem and a Signature Scheme Based on Discrete Logarithm,” IEEE
Trans. on Inform. Theory, Vol.IT-31, No.4, July 1985, pp.469-472.

[5) J. Grollmann and A.L. Selman, “Computing Measures for Public-Key Cryptosystems,” SIAM J.Comput.,
Vol.17, No.2, April 1988, pp.309-335.

[6] G.H. Hardy and E.M. Wright, An Introduction to the Theory of Numbers, 5th Edition, Clarendon Press,
Oxford, 1979.

[7] D.R. Heath-Brown, “Almost Primes in Arithmetic Progressions and Short Intervals,” Math. Proc. Cambridge
Philos. Soc., 83, 1978, pp.357-375.

[8] H.W. Lenstra, Jr., “Elliptic Curve Factorization and Primality Testing,” Proceedings of Computational Number
Theory Conference, 1985.

[9] P. Ribenboim, The Book of Prime Number Records, Springer- Verlag, 1987.

[10] H. Shizuya, K. Koyama, and T. Itoh, “Zero-Knowledge Interactive Proof of Possession of Two factors,” sub-

mitted to Auscrypto’90, 1989.

