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Abstract:

Generation of a primitive root modulo a prime is a problem that given a prime p, generate a primitive root g modulo
a given prime p. In general, it is conjectured and believed that this can not be solved in polynomial or random
polynomial time in |p|. This paper presents a randomized algorithm for generating a primitive root modulo a prime,
and analyzes several properties of the randomized algorithm such as the probability that the randomized algorithm
generates a primitive root modulo a given prime, the expected running time of the algorithm, the maximum lower
bound for the order of the output ¢ € Z;, and the expected order of the output g € Z,. As a result, for a given
prime p, the randomized algorithm generates a primitive root g modulo a prime p with probability at least 1 — |p|~*
for some integer k and runs in expected polynomial time in |p|. Thus the >randomized algorithm efficiently generates
a primitive root g modulo a given prime p and this provides us one of the ways to design secure cryptographic

protocols and systems.
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1 Introduction

Generation (or recognition) of a primitive root modulo a prime is a simple but is supposed to be an intractable
problem in number theory. (e.g., see C18 and C19 in [1], or see 4.3 in {5].) A solution to this problem, i.e., to
find an eflicient algorithm for generating (or recognizing) a primitive root modulo a prime, enables us to design
secure cryptographic protocols and systems such as the public key distribution system by Diffie and Hellman [3],
the public-key cryptosystem by El-Gamal (4], etc.

Informally, “recognition of a primitive root modulo a prime” is a problem that given a prime p and any g € Z;,
recognize whether or not g € Z; is a primitive root modulo a prime p, and “generation of a primitive root modulo
a prime” is a problem that given a prime p, generate a primitive root g modulo a prime p. In this paper, we use
GPR (RPR) to denote “generation (recognition) of a primitive root modulo a prime” for notational simplicity.
It is already known that if every prime factor of p — 1 is given, RPR is solvable in polynomial time in |p| (e.g.,
sce Rem18 in [1].), where |z| denotes the length of a binary encoding of an instance z, and if RPR is solvable in
{random) polynomial time in |p|, GPR is also solvable in random polynomial time in |p|. (e.g., see Rem19 in [1}.)
In a usual case, however, it is difficult to find every prime factor of p — 1 [8], then we have the following simple and

naive open problem:

Open Problem: If every prime factor of p — 1 is not known, can RPR or GPR be solved in polynomial or

random polynomial time in n(= |p|)?

In general, it is conjectured and believed that the answer to the Open Problem is “no.” (see 4.3 in [5].) If this
conjecture is true, then we have no way to generate (or recognize) a primitive root modulo a prime p in polynomial
or random polynomial time in n(= |p|). Then we may need a more relazed setting, somewhat in a practical sense,
for generating (or recognizing) a primitive root modulo a prime. An informal description for our setting is; (1) we
are allowed to use at most polynomial or random polynomial time computing resources, and (2) an algorithm for a
given problem correctly answers with high probability.

In this paper, we present a random polynomial time algorithm Agpg for solving GPR with high probability, i.e.,
given a prime p, the algorithm Agpp correctly generates a primitive root ¢ modulo a prime p with high probability
in random polynomial time in n = |p|. It is worth noting that the algorithm Agpr generates a primitive root modulo
a prime p with high probability in random polynomial time in |p|, but does not necessarily generate the same one
in each execution of the algorithm, and that “high brobability” is in a sense of not 1 — 2~9UPD but 1 — |p|=2),

The outline of this paper is as follows: After some preliminaries, section 3 presents a randomized algorithm
Agpr for generating a primitive root modulo a prime. Sections 4 and 5 analyze several properties of the algorithm
Agpr such as the probability that the algorithm Agpg generates a primitive root g modulo a prime p, the ezpected
running time, the maximum lower bound for the order of the output g € Z;, and the expected order of the output
g € Z;, and show that for a given prime p, the algorithm Agppg generates a primitive root ¢ modulo a prime p with
probability at least 1 — |p|=* for some integer k and runs in ezpected polynomial time in |p|. In addition, Section 6

describes conclusion and several remarks, and refers to a further modified problem in a slightly different setting.

2 Preliminaries

In this section, we present a formal definition for “recognition of a primitive root modulo a prime (RPR)” and

a known result for RPR. For notational simplicity, we use PRIME to denote a set of all primes in the rest of this

paper.



Definition 1 (RPR):  Given a p € PRIME, for any g € Z;, 1ecognize whether or not g € Z; is a primitive

root modulo a given prime p.

If every prime factor of p — 1 is known, then RPR. can be solved in polynomial time in n(= |p|) by the following

lemma:

Lemma 1 (see Rem18 in [1]): Let p € PRIME and let the complete factorization of p— 1 be of the form that
p—1=pi'py - pi', where p, € PRIME and ¢; > 1 (1< i < t). Then g € Z, is a primitive root modulo a
prime p il g®=D/P £ 1 (mod p) (1 <i < t).

Proof of Sketch: It is not difficult to show the following equivalency: “g € Z, is not a primitive root modulo
a prime p.” ¢ “For some ¢ < p— 1 such that efp— 1, g° = 1 (mod p).” & “For some ¢ € PRIME such that
glp=1,¢%" V=1 (modp)” O

3 Algorithm for GPR (Agpr)

In this section, we give a formal definition for “generation of a primitive root modulo a prime (GPR),” and

present a randomized algorithm Agpp for solving GPR in the case that every prime factor of p—1is not known.
Definition 2 (GPR):  Given a p € PRIME, generate a primitive root g modulo a given prime p.

Without loss of generality, p — 1 consists of ¢ distinct prime factors py, pa, - -+, pr, where 2 = p; < py < -+ < De-

Then the description of the algorithm Agpp is as follows:
Algorithm AGPR:

Input: p€ PRIME, where n = |p|.

Step 1:  For some integer d > 1, compute every prime factor p; of p—1suchthatp; <n? (1<i<s< t).
€] . €2

(Let the partial factorization of p — 1 be of the form that p—1=p'p? - pS-Q, where 2=p; < p, <

---ps < n? and Q is generally a composite number.)
Step 2:  Choose g € Z; randomly, uniformly, and independently.

Step 3: Compute u = {g(”'l)/q - 1} 11 {g(”“)/”" - l} (mod p).
1<igs

Step 4: Ifu# 0 (mod p), then output g € Z; as a primitive root modulo a prime p. Otherwise, go to
Step 2. ‘

Note that the Step 1 of the algorithm Agpg can be carried out in polynomial time in n = |p|, and the integer
d plays a role to control the probability that the algorithm Agppn generates a primitive root g modulo a prime p
and the running time of the algorithm Agpg. In Step 4 of the algorithm Agpp, if u = 0 (mod p), (randomly,
uniformly, and independently chosen) ¢ € Z, is certainly not a primitive root modulo a prime p, because g®=1/7i = 1
(mod p) for some j (1 < j < s), or g”:";""":' =1 (mod p). Thus the algorithm Agpg rejects g € Zy in the case
that u =0 (mod p). Then how probable is the output g € Z, of the algorithm Agpg as a primitive root modulo
a prime p? To solve this problem, the following section precisely analyzes the probability that the output g € Z; of

the algorithm Agpp is really a primitive root modulo a prime p and the running time of the algorithm Agpp.



4 Analyses for Algorithm Agpr

Our goals in this section are to show that the algorithm Agpr generates a primitive root modulo a given prime p
with high probability in a sense of 1 — [p]7°M, and to prove that the algorithm Agpr runs in ezpected polynomial

time in n = |p|.

Theorem 1:  Let Ppp be the probability that the output ¢ € Z; of the algorithm Agpn is really a primitive root
modulo a prime p. Then Ppg > 1 — [n/dlogn]n~¢, where n = |p|.

Proof: Let p—1 = p§'pS?---pf*, where p; € PRIME, ¢, > 1 (1 <i<t)and 2 =p; < pa < -+ < p¢.
If every prime factor of p — 1 is known, then the output of the algorithm Acpp is a primitive root modulo a
prime p with probability 1. (see Lemma 1.) If not, then for some integer d > 1, there exists s (1 < s < 1)
such that p, < n? < p,y,. Here we define sets D; to be D; = {a|a® /P =1 (modp), a€ Z;} (1<i<s)
and a set S to be § = {a|a?'?"?¥ = 1 (mod p), a € Z;}. Furthermore, we define a quantity N(n?) to be
N(né) = ||D;UDyU---UD US|, where || A|| denotes the cardinality of a set A, thus,

N(n%)

|DsUD;U---UD,US|
IDrUDU---UD,||+ IS~ (DyUDU---UD)
SUDili- Y WnDill+ Y IDinD;nD:||

i=1 1<i<j<s 1<i<j<k<s
+ (=)D DyN--N D IS = (DU DyU---U D)l

1

Recalling the definition of D; (1 < i < s), then we have

I

D;N D, {ala®>V/PPi=1 (modp), a€Z]} (1<i<j<s),

D:N D, N Dy

il

{alaP=DP#irt =1 (mod p), a€ Z;} (1<i<j<k<s),

DinD,N---nD, = {alg® VPP =1 (modp), a€Z;},
and thus this yields
N(n%) | DyUuDU---UD, || +|IS—= (DyUDU---UD)|
Lp-1 -1 -1 -1

P~ _ Z P + P +...+(_1)"1._.£_..
=1 Pi 1<i<i<s PiPi 1<icj<kgs PiPiPk PPz " Ps
+ [IS=(DyUDU---U D)
21 1 1 1
(rp-1) — - —+ +ot (-1 —
-‘g; pi xgg}g; pips 15.‘<,Z'<k5, PP Pk Pipz° " Ps
+ 1S = (D1UDU---UD)
2 1
(p— 1){1—H (1— ;)}+||S—(D1UD;U~--UD,)||.

=1 '

il

Note that the set S—(DyUD,U---UD,) consists of every distinct (p§' p3? - - - p¢*)-th primitive root of unity modulo
a prime p. (see the definitions of D; (1 <4 < s) and S.) Then the cardinality of the set S —(D;UD;U---U D,)is
given by , , ,

s~y upsu-updl=e{$r} = I 1T (1- 7).
where () denotes the Euler’s totient function. The algorithm Agpr randomly, uniformly, and independently
chooses g € Z; in Step 2, and rejects g € Z; such that u=0 (mod p) in Step 4. On the other hand, there exist
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¢(p — 1) distinct primitive roots modulo a prime p, hence the probability Ppp is bounded by
plp—1)
Ppp = s
Il Z; It =N (n?)

el (- 3)

DR () B Ty

111 (1-2)

=1 pi

Ise ..I!(l-—) I 11 (1)
= fI (1—1) "’H“pei > ﬁ (1—1)

i=et1 pi H pi—1 = pi

=s+1

Recalling that 2=py < py < - - <p, <p,py < - < P¢, then we have

t t—s
Ppn>H(1——)>H (1—_)=(1—L) .
i=s1 D =s+1 Ps+1 Ps+1

¢ ¢
Sincep>p—1> H P> H Pot1 > pi3) and n? < p,,4, this yields
i=s+1 iZs+1

n=|p| >log(p—1) > (t - s)log p,41 > (t — s)dlogn,

and it follows that ¢t — s < n/dlogn. Then,

t—s n/dlogn
1 ) N (1_ 1 ) N (l—n‘d)r"/dh‘"],

Ps+1 Ps+1

Ppp > (1 -
because n? < p,yq, t ~s < n/dlogn, and 0 < 1 —1/p,4; < 1. For any d > 1 and any n > 1, it is not difficult
to show that (1 — n=4)M/dloenl 5 1 _ Iy /d]og n]n™?, and thus we finally have Ppg > 1 — [n/dlog n]n~¢, where
n=[pl. O

The following theorem guarantees that the randomized algorithm Agpg runs in ezpected polynomial time in
n(= |pl).
Theorem 2:  The algorithm Agpp runs in expected polynomial time in n{=|p|).

Proof:  To show that the algorithm Agpg runs in expected polynomial time in n(= |p|), the probability P,xo
that for any g € Z 5 4 # 0 (mod p) in Step 4 must be analyzed. Since g € Z; is randomly, uniformly, and
independently chosen, P, is. bounded by

" Iz
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where PRIME(L) = {q|g € PRIME, g < L}. Noting the result by Mertens [6] that

-3 =izl @)}

where C is the Euler’s constant [6], we have P,zo > e ¢/(4dlogn) for sufficiently large n. Then the ezpected

1
QEPRIME(L) (

iterations of Step 4, 7, is estimated by

= . i-1 1
=3 iPugo {1 — Pugo} ' = P
=1 u#0

and thus, for sufficiently large n and a fixed d > 1, 7 < 4e®dlogn < n. Hence the algorithm Agpg runs in expected
polynomial time in n, because for any integer d > 1, the algorithm Agpg (in a brute force manner) searches every
prime factor p; (< n?) of p— 1 in polynomial time in n = |p|, and evaluates polynomially computable congruences

modulo a prime p. O

5 Analyses for Order of Outputs

In this section, we analyze the order of g € Z; that the algorithm Agpr generates as a primitive root modulo a
prime p. To do this, we prove the maximum lower bound for the order of g € Z; that the algorithm Agpr outputs.
Furthermore, we define expected order with respect to the algorithm Agpr and show that it is large enough. In
general, any g € Z; of large order modulo a prime p provides secure cryptographic protocols or systems (e.g., see

[3], [4].), thus this result is not only of theoretical interest but also of practical importance.

Theorem 3:  For any g € Z; that the algorithm Agpg generates as a primitive root modulo a prime p, the order
of g € Z; > pi'p -+ Y Por-

Proof: In Step 4, the algorithm Agpr rejects every g € Z; whose order is divisible by both each divisor of

(p—1)/pi (1 <1< s) and each divisor of pf'p3’ - - - p%*. Thus it can be immediately shown that the least order of

el .2

g € Z; that the algorithm Agpr generates as a primitive root modulo a prime pis p{'p3’ - p¥*psq1. O

Definition 3:  The expected order e(n?) with respect to the randomized algorithm Agpp is an ensemble average

over every g € Z, that the algorithm Agpp generates as a primitive root modulo a prime p.

Theorem 4: The expected order £(n?) with respect to the algorithm Agpp satisfies that e(n?) > (p — 1)(1 -
[n/dlog n]n~?).

Proof: In Step 4, the algorithm Agpr rejects every g € Z; whose order is divisible by both each divisor of
(p—1)/pi (1 < i< s)and each divisor of pf'p5? -+~ p2*. Since for vlp — 1, there exist p(v) distinct v-th primitive

roots of unity modulo a prime p, the expected order e(n?) with respect to the algorithm Agpg is bounded by
LPFS) Cr4a .
3 3 SRR A (R pipi - r) - Re(R)
d ie41=0 i542=0 $1=0
e(n?) =
9 ERRIL

Cot1 Cs42

R-piiipidy - pite(R - PP g2

>
2 1
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=1 i=1 v
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<1 C’oo-

where 12 = pf'p3* -+ p%*. Thus we can show, in a way similar to the proof of Theorem 1, that e(n?) > (p— 1)(1 -

[n/dlogn]n~d). O

6 Conclusion and Remarks

In this paper, we presented a random polynomial time algorithm Agpp for generating a primitive root modulo a
prime with high probability. It is worth noting that the randomized algorithm Agpr is also applicable to finding a
generator of GF*(¢™) or to finding a generator of a cyclic group G in almost the same way.

Here we consider a slightly modified setting: For any I > 2, define a set COMP(l) to be COMP(l) = {clc =
pi'ps B, pupacc,m € PRIME, py < py < -+ < py, |e|/|m| < K, for some constant K}. (Informally,
COM P(l) is a set of composite numbers with [ distinct prime factors, each of which is large enough.) Then we have

a modified problem, i.e., modified generation of a primitive root modulo a prime (MGPR), in the following:

Problem (MGPR):  Assume that c € COMP(I) (I > 2) and g is the least prime in an arithmetic progression
fe+1(f > 1). Then for any c € COM P(l), generate a primitive root g modulo a prime q.

A problem similar to the above arises in [10] to demonstrate possession of two factors in a zero-knowledge manner.
Dirichlet’s theorem (see Theorem 15 in [6].) guarantees that for any ¢ € COM P(l), there exist infinitely many
primes in an arithmetic progression fc+ 1 (f > 1). Though the least prime q(= fuimc + 1) in an arithmetic
progression fc+ 1 (f > 1) is proved to be g < c?/(logc)* for every k > 0 (see p.218 in [9].), Heath-Brown’s
conjecture [7] gives us a strong bound that claims f,.;, = O(|¢|?). Thus, with Heath-Brown’s conjecture, we can use
Agpr as a building block to solve MGPR in random polynomial time in |c| with overwhelming probability, i.e.,

with probability at least 1 — 270UeD,

Algorithm Apgpr:

Input: c¢e€ COMP(l), where | > 2.

Step 1:  Find the least prime ¢ in an arithmetic progression fc+ 1 (f > 1) in a brute force way using a
random polynomial time primality testing algorithm [2].

Step 2:  Input (randomly, uniformly, and independently chosen) g € Z; and a prime g to the algorithm
Agpr.

Step 3: Ifu# 0 (mod g), then output g € Z; as a primitive root modulo a prime g. Otherwise go to
Step 2.

Noting that ¢ = fininc + 1 and ¢ € COMP(I), we have ¢ ~ 1 = frnin¢ = frninp3'pg - pf'. Thus if Heath-Brown’s
conjecture is true, then the complete factorization of fmi, can be found in polynomial time in |c|. Here we use

Pcompqy to denote the probability that the output g € Z4 of the algorithm Apygpg is really a primitive root modulo

Pcomp(ry li[(l—~1—_)>]£[(l—i)=(1_i)'>1_i

i=1 g i=1 P p1
1—1.27losPr 5 1 2=0UpiD 5 7 _ 9=OUeh)

a prime g, then

I

because py < p; < --- < p and |c|/|pi| < K for some constant K. Thus we can show in a way similar to the above
that for a set COMP = UCOMP(I), Poomp > 1— 2-0UeD, where Ppopp denotes the probability that for any
¢ € COMP, the output ;1226 Z; of the randomized algorithm Apygpr is really a primitive root modulo the least
prime ¢ in an arithmetic progression fc+ 1 (f > 1).
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