oA Ty X A 10— 4
(1989, 9 22)

IR X FJ o 27 « 7L loxtd B
IEIT/ /N XA 7)L =2 V) =X 2

N # # *
R #® K ¥ I ¥ 8

KRBT Oy Y — « LA BRERFOTO LY Y —RQUEE. ERRT ULV Y —EFHIE>TY AN v
Ve FUARMENT 3DD7LTYXLEEZTWE, CORME. RETOLv Y —2EDESPRTOLY Y —
THBERASPERTBENZERD S ERRBETLIN. AT KRBTy ¥ — i3s3 %2 — LB L.
*2—OIMYHUORBZRIET LY — M UIERIEEN AREEL RO TV S. Eh BFR7L 1 OHEEF
RUTHBRABIRERIT>T0 S, 7AITY RLAOHBBEMEL. RET 0Ly Y —0O%%E n &£ UT. BEORA
T On®) THBEM. n PREVEIDLIRBERFBRBTHI LV B, FSEMER 0n) TH3.

AN EFFICIENT COMPENSATION-PATH FINDING ALGORITHM

FOR A LARGE-SCALE SYSTOLIC ARRAY

Takao OZAWA

Department of Electrical Engineering
Kyoto University, Kyoto, 606, Japan

The problem of constructing a systolic array from a processor array
containing faults can be reduced to the problem of finding compensation paths
for faulty processors. In this paper an efficient solution algorithm for the
latter problem is given. Four queues of faulty processors are constructed, and
compensation paths are successively found for the faulty processors at the exits
of the queues. A novel branching scheme is used in the search for compensation
paths. The worst-case time complexity of the algorithm is O(n3) where n is the
number of faulty processors, but it can be said such worst cases rarely happen,

if n is large. The space complexity is O(n).

1. INTRODUCTION
Very large-scale or wafer-scale integrated
circuits for achieving a system constituted by
a large number of circuits on a chip or wafer
inevitablly contain, in today's IC manufactur-
them.
therefore,

ing technology, faulty circuits in In
order to enhance production yield,
such integrated circuits are manufactured with
and construction of the system
using only working circuits tried[1]-[6].

however, problems which must be

redundancy,
is
Very often,
solved for such construction have been found NP
complete.

In this paper we consider a rectangular(2
dimensional) array of processing elements(PE's)
which are connected to form a grid. Such a
processor array is regarded as one of the most
multiprocessor suitable
for parallel computation, and the construction
of a systolic array(logical array) from the
grid of PE's containing faults(physical

useful architectures

array)
has been considered in various forms
the Tocation of spare PE's and the type
switches[5].

depending
of
Very

on

communication buses and

recently Kung et al. considered a processor

array having spare PE's on its peripheral and

single-track switches for reconfiguration[6].
Their basic idea for reconfiguration is to find
paths, called compensation paths, which repre-

sent the replacement sequences of PE's from

faulty PE's to spare PE's on the grid. To this
end they introduced a graph, called a contra-

diction which indicates

paths

compensation
They

the
is possible to the problem of

graph,
unable to use at the same time.
reduced the problem of determining whether
reconfiguration
finding a maximum vertex independent set of the
contradiction graph. It is known, however, the
latter problem is NP complete, and they gave an
it
and Kerborsch

branch-and-bound solution algorithm for
based on the algorithm of Bron

for finding all cliques of a graph[7].

We notice that finding compensation paths
can be done on a grid which is a very special
planar graph, and present an efficient algo-

rithm for it based on this observation.

2. PROBLEM FORMULATION

Our problem formulation is almost the
as that of Kung et al.. Let P be the rectangu-
lar region in an x-y plane defined by O<x<N+1
and O<y<M+1 where N and M are integers. We
assume that PE's are placed on the integer
coordinate points (x,y)(x, y:integers) of P
except the four corner points of P. The PE's on

same

the peripheral of P are spares. Single-track
communication channels are used to connect
PE's, and four-state switches for exchanging

communication paths are placed at the intersec-
tions of the communication channels. See
1. We are given the distribution of faulty PE's
on P(it is assumed that the communication 1lines

and

Fig.

switches are fault-free), and our goal is
to obtain an NxM systolic array consisting of
good(non-faulty) PE's from the initial setting
of a systolic array with PE's being placed on
the

1<x<N and 1<y<M. This process is called

integer coordinate points (x,y) such that
recon-

figuration. A compensation path is defined to
be a path which connects a faulty PE and a
spare PE going through some other PE's. It

represents the sequence of replacement of PE's
in the reconfiguration, that is, if the PE's on

the compensation path are P1s Pps P3s +os Ppiqs
P where Py is faulty and Pn is a spare, then
Py is replaced by Pos Py is replaced by Pas -os
and Pp-1 1s replaced by Py in the reconfigura-
tion. It 1is assumed that faulty PE's be
converted into connecting elements(communica-

tion lines).

can

Fig. 1 Array of

PE's.

Kung et al. showed that the above defined
reconfiguration is possible if, for each faulty
PE, a compensation path
COND1: which is a horizontal or vertical

straight line,

COND2: which does not go through any other
faulty PE,

COND3: which does not cross any other compen-
sation path, and

COND4: for which there exists no other compen-
sation path running in parallel and in the
opposite direction with distance 1,

can be found. Thus the problem we are going to

consider in the following sections is:

PROBLEM: Obtain, whenever possible, compensa-
tion paths satisfying the conditions COND1-
COND4 for all the faulty PE's.

Because of COND1, we may search compensation
paths
vertices

on a rectangular grid graph(without the
at the four corners) whose vertices
correspond to PE's. Paths satisfying COND1 and
COND2 are called candidate paths, and the
candidate path going leftward(resp. rightward,
downward, upward) from a faulty PE is called a
KL-path (resp. KR-path, KD-path, KU-path).
Candidate paths can easily be determined, and
thus our main concern is to select, from candi-
date paths, compensation paths satisfying the
step in the

remaining two conditions. At a

procedure of finding compensation paths a
faulty PE for which a compensation path has not
yet been found is called a U-PE(unprocessed

PE). Initially all the faulty PE's are U-PE's.

3. SOLUTION ALGORITHM
3.1 Lists and Queues for U-PE and Candidate
Paths
Consider a U-PE located at point (x,y) on P.

Initially it has its KL-path(resp. KR-path,
KD-path, KU-path) if there exists no other U-PE
which 1is Tlocated at point (x',y') such that
x'<x and y'sy(resp. x'>x and y'=y, x'=x and

y'<y, x'=x and y'sy). Therefore, we sort faulty
PE's their x-coordinates and
y-coordinates, and construct two linear linked-
Tists

according to

named LR-Tist and DU-1ist respectively.
LR-Tist{resp. DU-list) is defined to be a
double-ended 1inked-list of U-PE's such that if
its i-th cell and j-th U-PE's
located at (Xi’yi) and (Xj’yj) respectively and
if i<j, then it must be that Xiifj and, in case
y1<yj(resp. yiiyj and, in case yi=yj,

cell contain

=X
i3’

Xi<x')' LR-1ist is used as two queues of U-PEs,
named L-queue and R-queue, whose exits are the
left and right ends of LR-list
Likewise, DU-Tist is used as two queues,

respectively.
named

D-queue and U-queue respectively, whose exits
are the left and right ends of DU-list respec-
tively. The U-PE at the exit of L-queue ({resp.

R-queue, D-queue, U-queue) 1is called UL-PE
(resp. UR-PE, UD-PE, UU-PE).

We also construct four linked-lists for KL-
paths, KR-paths, KD-paths and KU-paths respec-
tively. The 1ist for KL-paths(resp. KR-paths)
is obtained from LR-1ist by deleting U-PE's
each having no KL-path(resp. KR-path). Likewise
the 1ist for KD-paths(resp. KU-paths) 1is ob-
tained from DU-1ist by deleting U-PE's
having no KD-path (resp. KU-path).

A block in LR-1ist(resp. DU-1ist) is defined
to be the set of U-PE's placed on the
having the same x-coordinate(resp.
nate). Only the first(resp. last) U-PE of a
block 1in LR-1list can have a KD-path(resp.

last)
KL-path
use the

each

points
y~-coordi-

KU-path). Likewise, only the first(resp.
U-PE of a block in DU-1ist can have a

(resp. KR-path).
linked-1ists
linked-1lists for blocks.

Therefore we can
for candidate paths also as the

3.2 Compensation-Path Finding Algorithm

[I] The major step of our solution algorithm is
the selection of compensation paths from candi-
date paths. We first present the key factors to
be attended to in understanding the algorithm.
(I.1) Search for compensation paths: The algo-
rithm repeatedly

searches for compensation
paths examining the conditions, given later in
(I1.1)-(I1.5), on the candidate paths of UL-PE,
UR-PE, UD-PE and UU-PE. If the conditions in
(11.2)-(11.5)

the conditions, a compensation path for one of

apply, it selects, according to

these U-PE's or a set of compensation paths for
all of these U-PE's at the same time. Note that
it may happen that two or more of these U-PE's
coincide, that is, the same U-PE appears at the
exits of two or more queues.

(1.2) Branching: It may happen that the compen-
sation path(s) for a U-PE(s) at the exits of

,,3,,

the four queues can not uniquely be determined.
Then
compensation paths. The algorithm selects one(a
set) of candidate paths as the compensation
path(s) for the U-PE(s) and proceeds to the
branch of the search initiated from this selec-

a branching occurs in the search for

tion. The state of the queues and lists at the

branching point is stored for possible later
use.

(I.3) Deletion operations on the lists and
queues: If a compensation path can be deter-

mined for a U-PE, then this PE is deleted from
both LR-Tist and DU-Tist(thus
D-queue and U-queue). The

from L-queue,
R-queue, remaining
candidate paths which the U-PE may have are
also deleted from the 1ists of candidate paths.
(I.4) Successful ending: If the four queues
for U-PE's become empty as a result of (I.3),
that 1is,

faulty PE's are

the algorithm ends successfully,

compensation paths for all
found.
(1.5)
it is not possible to find a compensation

for any of UL-PE, UR-PE, UD-PE and UU-PE,

Unsuccessful ending or termination: If
path
then

the algorithm ends unsuccessfully, or, if it is

branch of the
paths, terminates the search unsuccessfully and
latter

path
from which the branch of the search started and

in a search for compensation

returns to the branching point. In the

case the algorithm deletes the candidate
examines if there remains a branch which has
not yet been investigated. If one remains, it
the compensation paths determined in
lists
for the remaining U-PE's and candidate paths at
the branching point, and proceeds to the new

cancels
the old branch, restores the queues and

branch.

[11] Next, we present the details of (I.1).

(II.1) Whenever a new U-PE comes to the exit(s)

of the queue(s), the following operation END

branch of the

search, TERM is executed. In the

the above statement of (I.5) applies.

[END] If COND-E holds, end the search for com-
pensation paths.

[TERM] If COND-E holds, terminate the
for compensation paths in the branch.

or, if the algorithm is in a
latter case

search

(COND-E) The new U-PE has no candidate path.
(I1.2) CASE-1: If UL-PE has the KL-path, then
this candidate path does not cross any other
candidate path and thus it can be chosen as the
compensation path for this U-PE without affect-
ing the path selection for other U-PE's. The
same can be said regarding the other U-PE's at
the exits of the queues. Therefore we define
the following operation SEL-1.

[SEL-1] If COND-S1 holds, do EX-1.

(COND-S1) UL-PE has the KL-path, UR-PE has
the KR-path, UD-PE has KD-path or UU-PE has the
KU-path.

(EX-1) Select the candidate path satisfying
the condition as the compensation path for the
U-PE which has the candidate path. Delete the
If the
become empty, stop (the algorithm ends

U-PE from the four queues for U-PE's.
queues
successfully). Otherwise delete, from the lists
of candidate paths, the remaining
paths which the U-PE may have.

(I1.3) CASE-2: If a U-PE has only one candidate
path,
path. Therefore, we define the following opera-

candidate

it must be chosen as 1its compensation
tion.
[SEL-2] If COND-S2 holds, do EX-2.

(COND-S2) Any of UL-PE, UR-PE, UD-PE and
UU-PE has only one candidate path.

(EX-2) EX-1 plus the operation:
every candidate path which does not
COND3 or COND4.

The details of the deletion operation stated

delete
satisfy

in EX-2 will be given in section 3.4.
(II1.4) CASE-A: Suppose that none of COND-E,
COND-S1 and COND-S2 holds for the U-PE's at the
exits of the four queues. Then each of these
U-PE's has at least two candidate paths. The
algorithm proceeds to the following test,
which, 1in general, initiates a branch in the
search for compensation paths. The statement of
(I.2) above applies. We define:
[SEL-A] If COND-AL(resp. COND-AR,
COND-AU) holds, do EX-A.
(COND-AL) UL-PE has the KR-path.
(COND-AR) UR-PE has the KL-path.
(COND-AD) UD-PE has the KU-path.
(COND-AU) UU-PE has the KD-path.

COND-AD,

(EX-A) EX-2 plus the operations: store the

current state of the queues and 1lists for
U-PE's and candidate paths, and proceed to the
branch of the search initiated by the above
selection.

Fig. 2 illustrates SEL-A.

u_
J i
LTA*
Fig. 2 SEL-A.
L: UL-PE
) R: UR-PE
D D: UD-PE
U: UU-PE

SEL-A is applied to UL-PE first. If COND-AL
holds but the search terminates unsuccessfully
in this branch(the statement in (I.5) applies),
or if COND-AL does not hold, then SEL-A is
applied to UR-PE and so on. If COND-AU does not
hold, or if it holds but the search terminates
unsuccessfully 1in this branch, the
CASE-A terminates unsuccessfully. At this point
SEL-2 is applied, as Tong as it is applicable.
(I1.5) CASE-B: If CASE-A does not occur, or if
it does but terminates unsuccessfully and the
application of SEL-2 is finished, then it must
be that the U-PE's at the exits of the four
queues are all distinct. Moreover, each of the

search in

four U-PE's has exactly two candidate paths,
that 1is, each of UL-PE and UR-PE has the KD-
path and KU-path, and each of UD-PE and UU-PE
has the KL-path and KR-path. Let the coordi-
nates of UL-PE, UR-PE, UD-PE and UU-PE be
(v s (xpayp)s (xpsyp) and (x,y,) respec-
tively. There can be one of the following four
cases. ’
(COND-B1) Xp>Xy and Y Y-

(COND-B2) Xg<Xy and Y >YRe

(COND-B1) Xp>Xy and Y >Yg-

(COND-B1) Xp<Xy and Y <Yg-

Noting that the compensation paths should
not cross each other, we see that, for each of
the above four cases, there can be two ways to

the four
search for

select the compensation paths for

U-PE's. Thus a branching in the

compensation paths occurs. We define:
[SEL-B] Do EX-B-a(resp. EX-B-b).
(EX-B-a) Choose the KU-path of UL-PE, the
KR-path of UU-PE, the KD-path of UR-PE and the
KL-path of UD-PE as the compensation paths for
these U-PE's respectively, store the current
state of the queues and 1ist, and proceed to
the branch initiated by this selection.
(EX-B-b) Choose the KD-path of UL-PE, the
KR-path of UD-PE, the KU-path of UR-PE and the
KL-path UU-PE as the compensation

these

paths for
U-PE's respectively, store the current
state of the queues and 1ists, and proceed to
the branch initiated by this selection.

Figs. 3 and 4 illustrate SEL-B when

and COND-B3 hold respectively.

COND-B1

L L?
]
(a) (b)

Fig. 3 CASE-B under COND-B-1.
(a) EX-B-a. {(b) EX-B-b.

i

R R
D D
(a) (b)

Fig. 4 CASE-B under COND-B-3.
(a) EX-B-a. (b) EX-B-b.

In CASE-B-1 and CASE-B-3 EX-B-a is
first and if the search for compensation
in this branch terminates unsuccessfully,
EX-B-b is executed. If the this
branch terminates unsuccessfully, CASE-B termi-
nates unsuccessfully. In CASE-B-2 and CASE-B-4
EX-B-b is executed first.

executed
paths

search in

[III] As a summary we describe how the compen-

sation path finding algorithm proceeds.
Whenever a new U-PE comes to the exit(s) of

the queues for U-PE, END or TERM is applied. If

- 5—

COND-E does not hold, SEL-1 is applied. If
neither COND-E nor COND-S1 holds, SEL-2 is
applied. If none of COND-E, COND-S1 and COND-S2
holds, SEL-A is applied. If none of COND-E,
COND-S1, COND-S2 and COND-AL--COND-AU holds,
SEL-B is applied. The application of SEL-A
introduces If the
in the branch terminates

a branching. search for

compensation paths
unsuccessfully, the next condition of SEL-A s
tested. The application of SEL-B also

duces a branching. If the execution of EX-B-a

intro-

in CASE- B-1 and CASE-B-3(resp. EX-B-b in
CASE-B-2 and CASE-B-4) leads to an unsuccessful
termination of the search in this branch,

EX-B-b(resp. EX-B-a) is executed. If the search
in the branch thus initiated terminates unsuc-

cessfully, the entire search for compensation

paths ends unsuccessfully.

3.3 Search for Compensation Paths in the
Branches
In this section we describe how the search

for compensation paths which is initiated at

the branching operation in CASE-A or CASE-B,

can be done. First we define:
[SEL-3] If COND-S3 holds, do EX-3.

(COND-S3) UL-PE(resp. UR-PE, UD-PE or UU-PE)
has KD-path and KU-path{resp. KD-path and
KU-path, KL-path and KR-path, KL-path and
KR-path) for which there exists no candidate
. path violating COND3, but there exists a candi-
date path violating COND4.

(EX-3) Select the candidate paths satisfying
the condition as the
paths for the U-PE. Delete the remaining candi-
date path(s) which the U-PE may have.

[SEL-4] If COND-S4 holds, do EX-4.
(COND-S4) UL-PE(resp. UR-PE, UD-PE or UU-PE)

“temporal" compensation

has KD-path and KU-path(resp. KD-path and
KU-path, KL-path and KR-path, KL-path and
KR-path) for which there exists no candidate

path violating COND3 or COND4.

- (EX-4)
satisfying the condition as the
path for the U-PE. Delete the remaining candi-
date path(s) which the U-PE may have. If there
paths

Select one of the candidate paths
compensation

exist temporal compensation previously

selected, choose, from them, the (permanent)
compensation paths in such a way that COND4 is
satisfied.

[SEL-5] If COND-S5 holds, do EX-5.

(COND-S5) UL-PE(resp. UR-PE, UD-PE or UU-PE)
KD-path or KU-path(resp. either
KD-path or KU- path, either KL-path or-KR-path,
either KL-path or KR-path) for which there
exists no candidate path violating COND3.

(EX-5) Select the candidate path satisfying
the condition as the compensation path for the
U-PE. Delete the remaining candidate path(s)
which the U-PE may have. If there exist tem-
poral

has either

compensation paths previously selected,
choose, from them, the (permanent) compensation
paths in such a way that COND4 is satisfied.
[1] Let us consider CASE-A first. The
for compensation paths in this case can be
completed by the applications of SEL-1, SEL-2,
SEL-3, SEL-4 and/or SEL-5. COND-S1 for SEL-1 is
tested first, since EX-1 is simpler.
CASE-A or CASE-B occurs. The detail
selection operation is as follows.
Suppose that UL-PE has the KR-path and that
this candidate path is selected as the compen-
path of the U-PE. See Fig. 2.
consider the search for compensation paths in

search

No more
of the

sation Let wus

the region under the compensation
this region the U-PE which immediately precedes
the (former) UL-PE in DU-1ist is set to UU-PE,
and the exit of U-queue is moved to this U-PE.
Note that no U-PE in this region has the
Ku-path, since all the candidate paths crossing
the compensation path are deleted after the
above-stated selection operation. If the new
UU-PE has both the KL-path and KR-path, then
SEL-4 or SEL-5 is applied(see Fig. 5). If it
has either the KL-path or KR-path, SEL-5 is
If it has the KD-path only, SEL-2 is
applied. The same can be said for the U-PE
which becomes UU-PE after the application of
SEL-3 or SEL-2.
The same applys to the search in the
above the

path. For

applied.

region
first compensation path for the
UL-PE, if UU-PE is replaced with UD-PE.

We can make similar statements to the above
for the other compensation path selections in

= U Fig. 5 SEL-3
' after
Lo— CASE-A.
7 oR
D
CASE-A.

[11] Next we consider CASE-B.

(11-1) Suppose that COND-Bl(resp. COND-B2)
holds and EX-B-a(resp. EX-B-b) is executed. See
Fig. 3(a).
this case can be terminated by the applications
of SEL-1, SEL-2 and/or SEL-5. Suppose that
COND-B1 holds and EX-B-a is executed. If UL-PE
has the KL-path and KU-path(resp. KU-path and
KR-path), SEL-1(resp. SEL-5) is applied and the
KL-path KU-path) is
compensation path for this U-PE.

(I1I-2) Suppose that COND-Bl(resp. COND-B2)
holds and EX-B-b(resp. EX-B-a) is executed. See
Fig. 3(b). In this case it may happen later
that COND-A, COND-B1, COND-B2, COND-B3 or
COND-B4 holds again.

(I1-3) Suppose that COND-B3 holds and EX-B-a or
EX-B-b is executed. In this case, after the
repeated applications of SEL-1 and/or SEL-2Z2,
CASE-A may happen once later, but
than once. CASE-B does not occur. As stated in

The search for compensation paths in

(resp. selected as the

never more

[1] above the search for compensation paths in
CASE-A can be terminated by repeated applica-
tions of SEL-1, SEL-2, SEL-3, SEL-4 and/or
SEL-5. The same can be said for the case where
COND-B4 holds and EX-B-a or EX-B-b is executed.
6 illustrates the case where CASE-A
occurs after EX-B-a under COND-B3. UL-PE has
the KR-path and UR-PE has the KL-path.

Fig.

3.4 Deletion of Candidate Paths

The deletion of candidate paths to satisfy
COND3 can be done as follows. Suppose the
KR-path (resp. KL-path) of a U-PE is
as the compensation path. Then' either the
KD-path or KU-path, if exists, of each U-PE

selected

|| —
9 R
Fig.6 CASE-A
after
Lo EX-B-a
under
- [COND-B3.

which follows (resp. precedes) the relevant
U-PE in LR-list must be deleted. Which of the
KD-path or KU-path should be deleted can be
determined by comparing the y-coordinates of
these two U-PE's. Similarly, if the KU-path
KD-path) of a U-PE is selected as the
path, then either the KL-path or
KR-path of each U-PE which follows(resp. pre-
cedes) the relevant U-PE in DU-list is deleted.

The deletion of candidate paths to
COND4 can be done by utilizing the block struc-

(resp.
compensation

satisfy

ture of LR-Tist and DU-1ist, or more precisely,
using the 1ists for candidate paths. If the
KL-path or KR-path of a U-PE is selected as a
compensation path, then the U-PE's belonging to
the blocks which are adjacent, in DU-Tist, to
the block containing the relevant U-PE, are
examined if they have candidate paths violating
COND4. Similarly, if the KU-path or KL-path of
a U-PE is selected as the compensation path,
then the U-PE's belonging to the blocks which
are adjacent, in DU-1ist, to the block contain-
ing the relevant U-PE, are examined for the
existence of candidate paths violating COND4.

3.5 Evaluation of the Algorithm

We have the following lemma and theorem for
our compensation-path finding algorithm. Let: n
be the number of faulty PE's.
[Lemma] The total number of executions of
EX-B-b under COND-B1 and of EX-B-a under COND-
B2 is at most n/8.
(proof) At each execution of EX-B-b under
COND-B1 or of EX-B-a under COND-B2, the compen-
sation paths for four U-PE's are determined.
Before CASE-B occurs there must be four U-PE's

for which compensation paths have been deter-

mined(UL-PE does not have the KL-path, and thus
there must be a U-PE lying to the left of this
U-PE. A similar statement can be made for
UR-PE, UD-PE and UU-PE). As stated in
3.3, CASE-B never occurs after EX-A, after
Ex-B-a under COND-Bl, COND-B3 or COND-B4, or
after EX-B-b under COND-B2, COND-B3 or COND-B4.
Thus this lemma holds.

section

[Theorem] The time complexity of the algorithm
presented in sections 3.1-3.4 is 0(n3) and the
space complexity is 0(n).

(Proof) LR-list, DU-Tist and the
candidate paths can be constructed in 0(n log n)

Tists for

time by sorting the x and y coordinates of the
faulty PE's. Each of the tests for the condi-

tions on UL-PE, UR-PE, UD-PE and UU-PE can be
done in 0(1) time. The deletion of candidate
paths from the lists after the selection of a

compensation path(s) can be done in O(n) time.
The selection of (permanent) compensation paths
from temporal compendation paths can be done
0(n) time. Therefore, the search for compensa-
tion paths in the branch initiated at EX-A, at
EX-B-a under COND-B1, COND-B3 or COND-B4, or at
EX-B-b
be completed in 0(n2) time. Now, it is possible
that EX-B-b under COND-B1 and/or EX-B-a
COND-B2

occurs in

under
CASE-A
initiated at

are repeated and, furthermore,
each of the branches
such repeated executions and each search in the
branch initiated at EX-A terminates
fully.
execution of the algorithm takes 0(n3) time in

unsuccess-

Therefore, we see, from Lemma, the
the worst case. Obviously the space
of the lists for U-PE's and candidate paths is
0(n).

case of branching is to copy them and use the

complexity
An easy way to store these lists in the
copy for the search in the branch. Note that in

CASE-B-1 or CASE- B-2 the search in the
where

branch
no more branching occurs is executed
first. Thus the copy requires 0(n) space only.
If the faulty PE's are distributed randomly
in P, the probability of COND-B1 or COND-B2
holds is 0.5. Then the probability that worst
case stated in the proof of Theorem is extreme-
ly small if n is large, and we can say the time

complexity of the algorithm is O(nz) for prac-

under COND-B2, COND-B3 or COND-B4, can

tical use.

3.6 Example
Suppose that the distribution of the faulty

PE's after the repeated applications of SEL-1

is as given in Fig. 7(for simplicity neither
the U-PE's for which compensation paths have
been determined by the applications of SEL-1

nor candidate paths which have been deleted are
shown). The lists for the remaining U-PE's and
candidate paths are given in the form of an
array(not as linked-lists for easier presenta-
tion) in Table 1. The rows denoted by LR and DU
show U-PE's in LR-1ist and DU-1ist respective-
ly, and the rows denoted by KL, KR, KD and KU
show, by 1, the existence of the KL-path,
KR-path, KD-path and KU-path
the U-PE in the same column. In the following
UL=k(resp. -k) means that UL-PE is k and has
(resp. does not have) the KL-path. Similar
notations apply to UR-PE, UD-PE and UU-PE.

(1) UL=-1, UR=-15, UD=-14, UU=-2. Branching.
(1.A) PE 15 has the KlL-path. CASE-A. This
candidate path is selected as the compensation
path for PE 15. The search proceeds to the

branch initiated by this selection.

respectively of

(1.A.1) UL=-1, UR=14, UD=-14, UU=-2. The KR-
path of PE 14 is selected as the compensation
path for the U-PE.

(1.A.2) UL=-1, UR=-13, UD=1, UU=-2. By the

applications of SEL-1, SEL-3 and SEL-4, the
KD-path of PE 1, the KL-paths of PE 6 and PE 7
are selected as the compensation paths.

(1.A.3) UL=-3, UR=-13, UD=-11, UU=-6. By the
repeated applications of SEL-2, the KD-paths of
PE 3, PE 4 and PE 13 are selected as the com-
pensation paths.

(1.A.4) UL=-5, UR=-11, UD=-11, UU=-5. PE 11 has
this
branch terminates unsuccessfully. Back to (1).
(1.B) CASE-B-1. Branching.

(1.B.1) EX-B-a. The search initiated by EX-B-a
terminates unsuccessfully. Back to (1.B).
(1.B.2) EX-B-b: The KD-path of PE 1, the KR-
path of PE 14, the KU-path of PE 15 and the
KL~-path of PE 2 are chosen as the compensation
paths for these PE's.

no candidate path, and thus the search in

o]V)

NSO——

315

Fig. 7 Ex-
ample.

—Oted
] 14

(1.B.2.1) UL=-3, UR=-13, UD=-11, UU=12. The
KU-path of PE 12 is chosen as the compensation
path.

(2)(after 1.B.2.1) uL=-3,
UU=-1. CASE-B-3.
(2.B.1) EX-B-a. The Ku-path of PE 3, the KL-
path of PE 11, the KD-path of PE 13 and the
KR-path of PE 6 are chosen as the compensation
paths.

(2.B.1.1) UL=-4, UR=-10, UD=-9, UU=-7. PE 10
has no candidate path. The this
branch terminates unsuccessfully. Back to (2).
(2.B.2) EX-B-b. The KD-path of PE 3, the KR-
path of PE 11, the KU-path of PE 13 and the
KL-path of PE 6 are chosen as the compensation
paths.

(2.B.2.1) UL=-4, UR=-10, UD=-9, UU=-7. The
KL-path of PE 7, the KD-path of PE 4, the
KR-path of PE 9, the KU-path of PE 10, and the
KD-path of PE 5 are chosen as the

UR=-13, UD=-11,

Branching.

search in

compensation

paths by the applications of SEL-1 and/or
SEL-2.
(2.B.2.2) UL=-8, UR=-8, UD=8, UU=8. KD-path of
PE 8 is chosen as the compensation path. The
search in this branch ends successfully. The
compensation paths obtained are shown in Fig.
7 by the thick lines.
4. CONCLUDING REMARKS
In this paper we have given an efficient

polynomial-order algorithm for the compensation
path finding problem which Kung et al. reduced
to an NP complete problem. The algorithm takes

advantage of the special feature of the pro-

Table 1

1 2 3 4 5 6 7 8 9 10] {2 13 14 15
LR 12 3 4 5 6 7 8 910 11 12 13 14 15
Kkf 01 00 0 1 1 1 1 0 1 0 0 1 1
KRy 01 0 0 1 1 1 0 1 0 I 0 0 1 0

1 2 3 4 5 6 7 8 9 10 {1 12 13 14 15
DUf14 111 3 9 810 4 513 7 615 12 2
Kby 01 0 1 0 1 1 1 1 1 0 0 I 0 0
KKg o1 0t o 1 1 1 0 1 0 0 t 1 0
blem, that is, the compensation paths should
lie on a rectangular grid graph without cross-

ing each other. We expect that the path finding
techniques using the queues and the branching
scheme are applicable to similar problems to be
solved on a plane. Deleting COND1, we can
perform, a complementary search of compensation
paths path

could not be found by the algorithm presented

for the U-PE's whose compensation
in this paper.

REFERENCES

(1) T. Leighton and C.E Leiserson: "Wafer-scale
integration of systolic arrays," IEEE Trans.
Comp. C-34, 5, pp.448-461, May, 1985.

(2) W.R. Moore: "A review of fault-tolerant
techniques for the enhancement of integrated
circuit yield," Proc. IEEE, vol. 74, pp.684-
698, May 1986.

(3) M. Sami and R. Stefanelli: "Reconfigurable
architectures for VLSI processing arrays,"
ibid, pp.712-722, May 1986.

(4) S.-Y. Kuo and W.K. Fuchs: "Efficient spare
allocation for reconfigurable arrays," IEEE
Design and Test of Comp. vol.4, 1, pp.24-31,
Feb. 1987.

(5) S.K. Tewksbury: Wafer-Level Integrated
Systems, Kluwer Academic PubTishers, Boston,
1989.

(6) S.-Y Kung, S.-N. Jean and C.-W. Chang,
"Fault-tolerant array processors using
single-track switches," IEEE Trans. Comp.
C-38, 4, pp .501-514, April 1989.

(7) C. Bron and J. Kerbosch: "Algorithm 457-
finding all cliques of an undirected
gggphs,“ Comm. ACM, vol.16, 9, pp.575-577,

3.

