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Let fi(F) denote the number of k-dimensional faces of a d-arrangement F or a
d-dimensional oriented matroid F. It is shown that fi(F) < (i) fa(F) for 0 <k <
d. Using the result, we obtain a polynomial algorithm to enumerate all faces from the
maximal faces of an oriented matroid. This algorithm can be applied to any arrangement
of hyperplanes in P? or in Euclidean space E¢. Combining this with a result of Cordovil
and Fukuda, it is also shown that, given the dual graph of an arrangement (where the
vertices are the d-faces and two vertices are adjacent if they intersect in a (d — 1)-face), one
can reconstruct the location vectors of all faces of the arrangement up to isomorphism in
a polynomial time. This in turn enables one to test in a polynomial time whether a given

set of (4,0, —)-vectors is the set of maximal vectors of an oriented matroid.
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1 Introduction

A d-arrangement of spheres is a collection A = {Sy,S52,-+,Sn} of n unit (d — 1)-
spheres in unit d-sphere S¢ with (L, S; = 0. Each d-arrangement A is naturally
associated with a cell complex of relatively open regions, each of which is called a face
or k-face if its dimension is k. The f-vector of a d-arrangement is the vector f(A) =
(fo(A), f1(A),- -+, fa(A)) where fi(A) is the number of k-faces. It is well-known that
the f-vector of a d-arrangement is polytopal, i.e., there is a d-polytope whose f-vector
is exactly f(A). This implies that the f-vector of an arrangement is a quite restricted
vector. However, as it was shown in [5], the class of f-vectors is much more restricted than

that of f-vectors of d-polytopes; for any d-arrangement A, and for each k=0,1,---,4d,

) < () )

In particular, this implies the number fi of k-faces is bounded by a polynomial function

of f; since (Z) < fa(A).

We first generalize this result to oriented matroids or equivalently to sphere systems [7]

(arrangement of topological spheres):

Theorem 1.1. Let F be the set of faces of a d-dimensional (corank d + 1) oriented
matroid, and let fi(F) be the number of k-faces of F. Then for each k=0,1,---, d,

75 < (41 @

Then we apply this result to obtain a polynomial aigorithm for enumerating all faces
of an oriented matroid from the given set of d-fa.cés. This implies that one can test in a
polynomial time whether a given set of (4,0, —)-vectors is the set of maximal faces of an
oriented matroid. Combining this with a recent result of Cordovil and Fukuda [2], we show
that one can test efficiently whether a given graph is the adjacency graph of maximal faces

of an oriented matroid, i.e., “almost” the graph of a zonotope.

2 Oriented Matroids

Let E be a finite set. A signed vector X on E is a vector ( X. : e € E ) with
X, € {+,0,—}. The negative —X of X is defined in the obvious way. The composition
X oY of two signed vectors X and Y is defined by (X oY), = X, if X. # 0, and



(XoY) =Y, if X, =0. An element e of E separates X and Y if X, = -Y, #0.
Let D(X,Y) denote the set of elements separating X and Y. An oriented matroid
(1,3,4,6,7)on E is defined as a set F of signed vectors on E satisfying the following
axioms (face azioms):
(F1) 0erF;
(F2) XeF = -XeF;
(F3) X,Ye€F = XoYeF;
3Z € F  such that
(F4) X, Y€ F and je D(X,Y) = " Z;=0 and
Ze=(XoY), foralle¢g D(X,Y)

Here 0 denotes the signed vector of all 0’s. We call a member of F a face. Note that
the set F is also called as the signed span of cocircuits of an oriented matroid [1].

Let A= {5;,5,,--+,5,} bea d-arrangement, and let St US;US; be a partition of
5% such that S and S; are the two open hemispheres of S? bounded by S; for each

¢ =1,2,---,n. For each vector # € S¢ o(x) denotes the location vector of x, that is,
+ ifzeSf
o(x)i=< 0 ifa e S;
- ife e Sy

Then it is easy to verify that the set {o(z) |z € §¢} U {0} satisfies the face axioms.

For signed vectors X and Y, wesay that X conformsto Y (denoted by X <Y)
if X;=Y, or 0 for each e € E. Note that < means the strict conformal relation, i.e.,
X <Y if X XY and if there exists e € E such that 0 = X. #Y.. Theset F of faces
of an oriented matroid satisfies the Jordan-Dedekind property with respect to the partial
order <. Foreach X € F, let p(X) be the length of maximal chain between 0 and
X. Wecall dim(X) = p(X)—1 a dimension of X in F. The dimension dim(F) of
the oriented matroid is defined as max{p(X) - 1| X € F}.

3 Face Enumerating Algorithm

In this section, we propose an algorithm enumerating all faces of an oriented matroid
from the set of maximal faces.
Let X and Y be k-faces of an oriented matroid with X=Y If DIX)Y) isa
parallel class of the set G of faces whose supports are equal to X then Z = X +D(X,Y)°
G



is a (k — 1)-face. Here Z = X + D(X,Y)? is the signed vector obtained from X by
replacing Xp(x,y) by 0. Conversely, any (k — 1)-face can be constructed by such a way.
This follows from the fact that G is also the set of maximal faces of some minor of the
oriented matroid. A function enumerating all (k — 1)-faces from all k-faces is described as

follows.

function lower_face( F* )

Input  F* C {+,0,-}%
Output  the set F*~1 of (k — 1)-faces if F* is the set of k-faces of an oriented matroid,;

begin
Partition F* into {FF F¥,...,F&} such that O(n|F*¥))
Fk is the set of elements of F* having the same support ;
Fk-1.=0; 0(1)
for ::=1 to m do begin
Compute the collection of parallel classes of FE O(n|FEF|)
for each X,Y € ¥ do begin
if D(X,Y) is a parallel class of F} then O(n)
FF1.= F*1u{X + D(X,Y)%%}; O(nlog|F*-1|)
end ;
end ;
return( 7571 ) ;
end.

One can enumerate all faces from all maximal faces of an oriented matroid by using the

above function lower_face() at most n times.

Face Enumerating Algorithm

Input an integer n and T C {+,—}";
Output the set F of faces if 7 is the set of maximal faces of an oriented matroid;
begin
F=T, W:==T,;
for i:=1 to n do begin
if W # 0 then begin
W := lower face( W );
F:=FUW,;
end ;
end ;
end.

To evaluate complexity of the procedure, first assume 7 is the set of maximal faces of
some d-dimensional oriented matroid on an n-set. The time complexity of each statement

of the function lower_face( ) can be easily evaluated as shown. The function lower_face( )



requires at most O(n|F*|? log|F*~!|) time to enumerate all (k — 1)-faces from all k-
faces. Theorem 1.1 says |F*| < ,‘: |T| <|T|* for any k. Hence the face enumerating

algorithm has the total complexity of O(2%n|7|?log|7|) under the assumption.

If T is not the set of maximal faces of any oriented matroid, complexity of lower_face( )
cannot be bounded by the above formula because d cénnot be defined for such a set and
because the size |F| may not be polynomially bounded by |7|. However, Theorem 1.1
guarantees that if |F| > [T|?> then 7 is not the set of maximal faces of any oriented

matroid. We consider a modified face enumerating algorithm which stops as soon as

|F| > |T|* is detected. Complexity of the modified procedure is O(n|T|*log |T]).

The represented algorithm requires O(|FF¥|?) comparisons of signed vectors to enu-
merate (k — 1)-faces obtained from FF. We can get a better complexity by efficiently
implementing this part. Suppose that F¥ is sorted according to a natural lexicographic
order and that S is a parallel class of F¥. Without loss of generality, we assume
that Xgs = (+,-+-,4) or (—,---,—) forall X € FF. Let FF(S+)={X\S| X ¢
Ff and Xs = (+,--+,+)} and FF(S—-) = {X\S | X € FF and X5 = (—,---,—)}.
Remark that these are sorted according to the ordering because the deletion preserves it.
Generally, in order to find all numbers contained in two given strictly monotone sequences,
the number of comparisons is at most the amount of lengths of these sequences. Thus the
number of comparisons of signed vectors to enumerate all (k — 1)-faces obtained from FF
by replacing restrictions on S by 0 is bounded by |FF| = |FF(S+)| + | FE(S-)].
Since the number of parallel classes of F¥ is at most n, the new algorithm requires
O(n|F¥|) comparisons of signed vectors. Furthermore, the set of (k — 1)-faces obtained
from F¥(S+) and FF(S—) is sorted according to the lexicographic order. Hence we
need to sort 7 only once.

Since (k — 1)-faces are enumerated from some distinct pairs of k-faces several times
in lower face( ), O(nlog|F*1|) time is required to update F*=!. However, we can
avoid enumerating each (k — 1)-face twice. Since it is a little bit complicated, we omit
an explanation. By this, the number of arithmetic operations to update F*=! becomes
O(1).

By the above consideration, we obtain an efficient face enumerating algorithm whose

complexity is O(n3|7?).



4 Concluding Remarks

Let O be a set of signed vectors on an n-set. By circuit axioms [1], one can test
in O(n?|O®) time whether O is the set of cocircuit of some oriented matroid. From
Theorem 1.1, the number of cocircuits of an oriented matroid is less than or equal to the
number of maximal faces. Then, by using the efficient algorithm in the previous section,
we can test in O(max{n?|7|?,n%T|*}) time whether a given set 7 of signed vectors on

an n-set is the set of maximal faces of an oriented matroid.

There is a graph naturally associated with an arrangement, called the dual graph of the
arrangement. The vertices of the graph are the d-faces (maximal faces) of the arrangement,
and two vertices are adjacent if they intersect in a (d — 1)-face. A recent result of Cordovil
and Fukuda [2] says: given the dual graph of an arrangement, one can reconstruct the
location vectors of all d-faces of the arrangement up to isomorphism in O(velogv) time.
Here v and e denote the number of vertices and the number of edges of the graph,
respectively. The enumerated location vectors have exactly n components where ‘n is the
diameter of the graph. From Theorem 1.1, e < dv < nv holds. Combining this with the
efficient face enumerating algorithm, we can reconstruct the location vectors of all faces

from the graph in O(max{nv?logv,n®v?}) time.
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