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Basis Reduction and Random Number Generation

Shu Tezuka
IBM Tokyo Research Laboratory

5-19, Sanbancho, Chiyodaku, Tokyo 102, Japan

ABSTRACT: A method for basis reduction in an integer lattice can be used for the
spectral test, which is known as a theoretical test for investigating the k-distribution of
linear congruential sequences. In this paper, we define an analogue of lineat congruential
sequences in GF{2,z}, and show that the so-called Tausworthe sequences are a subclass of
this class of sequences. Based on Mahler’s theory on the geometry of numbers in GF{p,z},
we derive a theorem that links the k-distribution of such sequences and the shortest vector
in a lattice associated with the sequences, thereby leading to the comsequence that the
basis reduction method in GF{2,z} proposed by Lenstra is applicable to the analysis of
the randomness of these generators. In addition, the geometric mterpretatlon of the lattice
structure of these sequences is described.
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1 Introduction

The linear congruential method is the most popular algorithm for random number generation
in the field of computer simulations. The randomness of the sequences produced by this
method can be analyzed by the so-called spectral test, which provides us with a measure
defined as the length of the shortest vector in the dual lattice of the lattice spanned by the
consecutive elements of a congruential sequence. This measure has proved to be powerful in
examining the k-distribution of congruential sequences since Knuth [2] made a comprehensive
study on this theory in his book, where an efficient approach due to Dieter for finding a
shortest vector in an integer lattice is fully described, but unfortunately, it is known to be
an exponential time algorithm.

Basis reduction of a lattice has many applications ranging from the geometry of numbers
to cryptography. One of main problems closely related to this method is to find a nonzero
shortest vector in a lattice. Recently, Lenstra, Lenstra, and Lovasz proposed a method
for basis reduction, which runs in time polynomial for a fixed dimensions. However, this
algorithm also suffer from the exponential time complexity depending on the dimension
size. So in high dimensions, it becomes slow. Moreover, the problem of finding the shortest
vector in integer lattice is believed to be NP-hard [1]. This fact is very critical in designing
congruential generators with large period length for the applications in the area of large-
scale computer simulation, since in such cases the designers of random number generators
need to apply the spectral test of high dimensions( over 10 dimensions ) to large period (
over 2*60 ) congruential sequences, where the LLL algorithm fails to find a shortest vector
in reasonable time.

On the other hand, Lenstra presented a polynomial time algorithm for finding a nonzero
shortest vector of a lattice in a vector space over GF{p, z}, the field of Laurant series over
GF(p). This fact leads us to consider the analogous version of the linear congruential method
in GF{2,z} for practical uses. The main result of this paper is a theorem that directly
links the k-distribution of sequences generated by such analogous method and Lenstra’s
basis reduction method in GF{2,z}. The paper is organized as follows. Section 2 briefly
overviews the conventional linear congruential generators. In Section 3, we define the linear
congruential method in GF{2,z} and show that Tausworthe generators are a special case of
the above generators. Then we prove the main theorem by using the results on the uniform
distribution of sequence of polynomials in GF{2,z} and Mahler’s theory on the geometry
of numbers in GF{p,z}. We also present a geometric interpretation of the main theorem.
Section 4 discusses the difference and similarity between this analogous version and the
conventional linear congruential method. ‘ ‘

2 Conventional linear congruential generators

Prior to introducing the definition of a new congruential method, in this section we summa-
rize the conventional linear congruential generators.

X; = aX;_1+c (mod M)
Xi/M’

U
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where a, ¢, M are integers and X is a sequence of integers. The normalized sequence u;, i =
1,2,...,is a pseudorandom sequence in [0,1). Most common choice of parameters was that
a =1 (mod 4), c=odd, and M = a power of two. However, it has been known that this
choice is insufficient because of the nonrandomness of the lower bits of X.. So, recently the
choice is widely used that M is prime and a is a primitive root modulo M. One of most
popular generators of this type is the so-called GGL, IBM random number subroutine, i.e.
M=2"—-1,a="17,and c=0.

The spectral test is a theoretical test for examining the randomness of linear congruential
sequences. The measure provided by this test is defined as follows: for k dimensions,

k
vy = min Z 82,
i=1

where the minimum is taken over all nonzero solutions of the equation

k
Zais; =0 (mod M).

i=1

An intuitive interpretation of this measure is that vy ! is the maximum distance of neigh-
boring hyperplanes covering all lattice points generated by consecutive k terms of congru-
ential sequences. In other words, v, is regarded as the nonzero shortest vector in the lattice
spanned by the following vectors,

er = (M,0,0,..,0)
€; = (—0,1,0,...,0)

er = (=a*71,0,0,...,1).

For more detail, refer to [2]. In short words, for a given set of a,c and M the larger the
value of vy, the more random the sequence is. Note that the value of ¢ has no effect on the
result of the spectral test, although the period length of the resulting sequence is influenced
by the choice of c.

3 Linear congruential generators in GF{2,z}

3.1  Definition of linear congruential generators in GF{2,z}

Here we define an analogous version of linear congruential sequences in GF{2,z}. This
generator is formulated as follows: let o be a mapping from GF{2,z} to the real field

defined as ~ -
a( Z a;:c‘) = Z a;2",

1=—o0 1=—00

where a; is in GF(2). Then a pseudorandom sequence u;, i = 1,2,...,in [0,1) is given as

fiz) = g(e)firs(z) + h(z) (mod M(z)),
. = o(fi(=)/M(z)), (1)

I
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where g(z), h(z), M(z) and fi(z) are polynomials in GF{2,z}. In practical situations, u; is
expressed by an approximate value with its leading bits as is the case of the congruential
sequence.

Tausworthe sequences [6] have been known as one of other types of generators than
linear congruential sequences ever since the mid of 60’s. In what follows, we can show that
this type of sequence is a special case of the above general class. Let M (z) be a primitive
polynomial, g(z) = 2* - (mod M(z)), with 0 <s <27 -1, and L is the word size. Then the
sequence is given as

L
U = Z ain+j2—1’
i=1

where q; is a binary sequence generated by a linear recurrence relation whose characteristic
polynomial is M(x). As easily seen, this is equivalent with the definition of Tausworthe
sequences.

The following theorem assures the existence of the sequences with large periods defined
in (1).

Theorem 1 For p > 2, where p is the degree of M(z), a sequence generated by (1) has the
mazimum possible period 22 — 1 if and only if M(z) is irreducible and g(z) is a primative
root modulo M(z).

(Proof)

In the case of M(z) with M(0) = 0, the sequence has a period of at most 2r-1,
which is less than 27 — 1.

So assume that M(0) # 0. Let fi(z) = fi(z) — fi-a(z). Then Firi(z) = g(z)fi(=)
(mod M(z)). I fi(z) has a period of 22 — 1, i.e., M(z) is irreducible and g(z) is
primitive modulo M(z), then fi(z) also has a period of 2% — 1.

If M(z) is irreducible but g(z) not primitive, then fi(z) has a period of at most
double the order of g(z) modulo M(z), which is less than 2% —1, since a possible
factor of 27 — 1 is at least 3. If M(z) is reducible, f;(z) has a period of at most
double the order of M(z), which is less than 27 —1 when p > 2. Thus, the proof
is complete.O

Unlike the conventional linear congruential method, these generators can not produce se-
quences of the maximum length 2? for p > 2.

The implementation for fast generation of sequences defined by (1) is described as fol-
lows: The multiplication of g(x) and u;(z) is done by a shift operation and an exclusive-or
operation. To reduce the number of operations, g(x) should be chosen as a polynomial
with a few nonzero coefficients. In the following, we give an algorithm for the case of
g(z) = 2*,0 < s < p—q. Assume that M(x) is a primitive trinomial, i.e., z°+z%+1, (p/2 > q).
Note that each term of a sequence is expressed by its leading p bits in this algorithm.

( An algorithm for the generator defined in 1))
Step.0: A and B are p-bit words.
Step.1: B «— g bits left shift of A
Step.2: B «— A exclusive-or B
Step.3: B «— p— s bit right shift of B
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Step.4: A «— s bit left shift of A
Step.5: A «—— A exclusive-or B
Step.6:  Output A

This idea is slightly modified from the original one due to Payne, who dealt with the case
of k = p. The total numbers of shift operations and exclusive-or operations are three and
two, respectively, thus the fast generation of sequences is realized.

3.2 A theorem on the k-distribution of the sequences

The next theorem links the k-distribution of the sequences defined above with the problem
of finding the nonzero shortest vector, with respect to the maximum norm, of a lattice in
the vector space over GF{2,z}. The definition of k-distribution is as follows:

Definition 1 A sequence with period 27 — 1 is said to be k-distributed with d-bit resolution
if every k-tuple of the leading d bits of each term of the sequence appears 2P~*¢ times over
the whole period except for one certain k-tuple appearing one time less.

Let L; be the lattice spanned by the k-tuple of consecutive elements of the sequence, and
L} be its dual. Then the respective bases for L, and L} are given as

e; = m(l,g(z),gz(z), w0 gt (), e} =(M(2),0,0,...,0),
e; =(0,1,0,...,0), e; = (9(=),1,0,...,0),

ex =(0,0,0,...,1), e; = (g(=)*1,0,0,...,1).

Then we obtain the following theorem. The norm || of a vector a = (a,, ..., a;) is defined
as maz{deg(a;);i =1, ..., k}

Theorem 2 A sequence with mazimum possible period 27 — 1 defined by (1) is k-distributed
with d-bit resolution if and only if the norm of the nonzero shortest vector in the lattice L}
s equal to or greater than d.

(Proof)

From the theory of uniform distribution [3], a sequence defined in (1) of length
2?2 — 1 is k-distributed with d bit resolution if and only if, for any nonzero
(s1(z), ..., se(z)) with deg(s;) < d,

deg("X):<P Hf:le(‘gi(m)%) N dey(§<}’ e(n(a:)z:‘:*'((z);t(i)—)

= 0.
Here e(a) is the character of a in GF{2,z} defined as
e(a) = (-1)",

1

where @, is the coefficient of z7! in the expression for a. Let I be the norm of
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a nonzero shortest vector of the lattice L. Then, from the definition of L, [l is
given as the norm of the nonzero solutions of

ggi(m)s;(z) =0 (mod M(z)).

This is equivalent to the following: for any nonzero (s,(z), ..., 3x(z)) with deg(s;) <
d<l,

k
S gi(e)si(e) £0 (mod M(2)).
i=1
‘This completes the proof.0

Although the above proof employed the result on the uniform distribution of sequences of
polynomials, instead of it we can use the theorem on the Walsh-spectral test [7], which
was developed for the analysis of the k-distribution of GFSR sequences, since the truncated
version of the sequences defined in (1) constitutes a subclass of GFSR sequences.

Lenstra [4] presented a basis reduction algorithm in GF{2,2} which runs in time poly-
nomial in the size of data and the dimensions. Since this algorithm works with respect to
the maximum norm of a vector over GF{2,z}, it can be applied to the investigation of the
sequences defined in (1).

3.3 Geometric interpretation of Theorem 2

For simplicity, we consider the two-dimensional case. Let S(I) be an equldlssectlon of the
two-dimensional unit space defined as

S(l) = {J(l,i,j)lﬂ <14,3< 21}1

where J(i, i,7) is a subinterval [127!, (i+1)27") x 527", (j + 1)27%), for 0 < 4,5 < 2. Let ay,a;
and B3, B; be reduced bases corresponding to the successive minima of the primal lattice
L, and of the dual lattice L3, respectively. Since |a;| < |az|, each cell of the equidissection
S(—|az| — 1) contains 27*?I2:| quadrilaterals each consisting four lattice points Py, Pz, P3, Py
specified as P, = P,® o, Py = Pi®a;, Py = Pi®a; ®az, where @ is the bit-wise exclusive
or operation of the corresponding coordinates. Furthermore, every cell of the equidissection
S(—|az]) contains equal number of points, i.e., 2r+2lesl points.

Figure 1 shows the point set produced by the generator, f;11(z ) = z8f)(z) (mod z°+
z + 1), where the origin is added to the point set, and Figure 2 gives an example of the
equidissection S(2) of the unit space. As easily seen, each cell contains a quadrilateral
consisting of four points in the point set, and each cell of the equidissection S(3) contains
one point.

Theorem 2 says that the point set is divided by the cells of the equidissection S(181),
where each cell contains 2P~2/%i| points, and, moreover, the point set can not be evenly
distributed into smaller cells of the equidissections S(k) for k > |3;|. By Mahler’s theorem
(5] that Bz = 1 (in general, fion = 1 for k dimensions), we arrive at the interesting
connection between the geometric idea of the 2-distribution and Theorem 2.
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Figure 1: A set of two-dimensional points, (w, uigr )i =1, .

-1 63, produced by the generator
fini(z) = 2*fi(z) (mod z*+z +1).
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Figure 2: The dissection S(2) of the same point set as Figure 1
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4 Discussions

In this paper we have defined an analogue of the linear congruential method over GF{2,z}
for random number generation. The following are the major difference and similarity be-
tween this method and the conventional linear congruential method.

Similarity: In both cases the k-distribution of sequences is connected with the shortest
vector in the lattice associated with the k consecutive elements of the sequences.

Difference: The shortest vector can be found in polynomial time in the case of a lattice
in the vector space over GF{2,z}, whereas it is not the case for an integer lattice.
Therefore, the generator defined in (1) with large period length can be employed
for large-scale computer simulations for which the conventional linear congruential
generators was not applicable due to the hardness to carry out the spectral test when
the modulus and the dimension-size become large.
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