FTIITYZXL 12-38
(1989. 11.22)

An On-Line Consistency Preservation Algorithm

for Distributed Database Systems

with Broadcast Communication Function

Jun Okui*, and Mamoru Fujii**

* Faculty of Engineering, Nagoya Institute of Technology
** College of General Education, Osaka University

Abstract

An on-line scheduler for consistency preservation of distributed database systems with broadcast comunication function is pro-

posed. Each local subdatabase system (SDBS) has an identical scheduler. These schedulers manage only their respective local data

items. Every transaction is executed by one SDBS. A scheduler communicates with other SDBS’s only if data items of another SDBS

are read (or written) in the transaction. Our goal is a SDBS which can act both as a local system and as a total system. In other

words, a system wherein each SDBS shall work as a stand-alone database system while preserving only local information in itself.

We assume that there is no copy of the data items. We further assume the scheduler can know the sets of the data items in

each transaction t which are read and written when the transaction t is started. The maximum number of communications to other

SDBS’s for each read (or write) operation is (SDBS’s + 1). Our scheduling algorithm accepts the class of the read-write histories

which includes properly the class of the CPSR.

1 Introduction

Local area networks (LAN’s) or satellite communication networks
which have broadcast communication functions are widely used
nowadays. We propose an on-line schedule algorithm (hereinafter
DSA) which utilizes the broadcast communication function for
consistency preservation (through the preservation of serializabil-
ity) of distributed database systems.

The problem of preserving consistency (through the preser-
vation of serializability) is generally a NP-complete problem(1].
Many polynomial time algorithms which accept subclasses of se-
rializable histories (the sequences of read or write commands ex-
ecuted by the scheduler) are known[1,2,3] (For example, CPSR
proposed by P.A.Bernstein, etc.). For distributed database sys-
tems, SDD1[5] applies the time-stamp. Our algorithm DSA ac-
cepts the class of histories which include properly the class of the
CPSR and also the class accepted by SDD1.

The distributed database system (hereinafter DDBS) is com-
posed of multiple local subdatabase systems (hereinafter SDBS’s)
and one broadcast communication line. Our goal is a SDBS which
can act both as a local system and as a total system. In other

words, a system wherein each SDBS shall work as a stand-alone

database system while preserving local information in itself. Each
SDBS has an identical scheduler which manages its local data
items. The only cost criterion is the number of broadcasts.

Database D is a set of data items of the DDBS. For our pur-
poses, the granularity of the data items is unimportant. The set
of data items D(s) is a subset of D which is managed by a SDBS
”s”. A transaction is a program which is managed by an SDBS.

We define transaction t as an acyclic flowchart of read(or write)
commands. SDBS s(t) is a sub-database system which executes
transaction t. The two subsets of set D in trausaction t are
defined as follows:

The readset R(t) is a set of data items which are read by
transaction t, and the writeset W(t) is a set of data items which
are written by transaction t. The scheduler of a SDBS s(t) can
know the readset R(t) and the writeset W(t) when execution of
transaction t is started. There are two types of transactions. If
the readset R(t) and the writeset W(t) of transaction t are both
included [D(s(t)): the set of data items in SDBS s(1)], then trans-
action t is a L-transaction. In any other case, transaction t is a
M-transaction.

The following are assumptions about the communication
model.

(1) Only one message is transmitted at a time.

—261 —

(2) Each message is received by all SDBS’s simultaneously in
the order of the transaction.

(3) There is no communication error.

(4) Each scheduler S of the SDBS has a number SI(S) and is
totally ordered by the number.

If a read (or write) command of a transaction t reads (or writes)
data items other than D(s(t)), then our algorithm DSA communi-
cates with other SDBS’s (n+ 1) times to decide the acceptance of
the read (or the write) command, where n is the total number of
SDBS’s in the DDBS. If a read {or write) command of a transac-
tion t reads (or writes) data items in the D(s(t)) then scheduler S
of the SDBS s(t) broadcasts a message only once. Further more,

it is shown that our algorithm DSA is deadlock-free.

2 Terminology

Let D = {z1,...,Zm} be the set of all data items.
The domain of data item z; is dom(z;), i = 1,...,m; a
database state is an element of dom(D) = dom(z,) X ... x

dom(z,,). We shall define the initial database state IS as con-
sistent. Database state tramsition occurs by transactions. The
set CD is the consistent database state which contains all of the
database states which will be translated by any serial execution
of transactions starting from the state IS.

Let G =< N, E > be a directed acyclic graph. We can define
a partial order <<g naturally on the set N. Let n; and ny be
different nodes of graph G. We say that ng is reachable from n,
in graph G iff there is a directed path from n; to n in graph
G. This shall be denoted n; <<g nz. Also, we say that a set of
nodes R(ny) is reachable from the node n; in the graph G iff

R(ny) = {ni|n; is a node of graph G and n, <<g¢ n;}

For simplicity, we consider that each transaction is a sequence
of commands requested by a directed acyclic graph. Let 7'(1) =<
N(t), E(t) > be a directed acyclic graph for transaction t. Where

N(t) = {C;|C; is a read or write command of the transaction t;}

E(t) = {(Ci,C;)| command C; will be executed in ¢ following
the command C;}.

One start node and some end nodes are specified in T(t). The
indegree of the start node is zero and the outdegree of each end
node is zero. Each command specifies also the set of data items
d(C;) which are the actual parameters of command C;. And we
denote Ci(z,y) as d(C;) = {z,y}. We represent ”C; <; C;” to
denote "there is a directed edge (C;, C;) in the set of edge E(1)”.
We say that a string S¢ = C; - Cz - ... Cy of commands in N(t)

is an ezecution sequence of t iff

(1) command C; is the start node of T(t)

(2) command C, is an end node of T(t)

(3) for any C;,Ciyi(1 <i<n=-1),Ci < Cina.

Let d(C;) and d(C;) be the set of data items which are the ac-
tual parameters of commands C; and Cj respectively. We say that
write commands C; and Cj are in ww-conflict iff d(C;)Nd(C5) # 4.
And, we say that read command C; and write command C; are
in rw-conflict iff d(C;) N d(C;) # ¢

Let ST be a set of transactions and let L be the union of the set
of commands which are in N(t) for each transaction t. A history
H=C;-Cy...-C, is astring of commands from the set L such
that:

For each transaction t in the ST, the projection of the string
H to the set N(t) of the commands is an execution sequence of t.

Any prefix of history H is a subhistory of H. We write *C) <y
Cy” to denote;

» command C; proceeds command C in history (or subhistory)
H”.

For example, if H = C;-Cqy-...-C, then C; <y C;ifl ¢ < 5.

Let H, be a subhistory. We say that transaction t is au ended
transaction if the projection of the subhistory H, to the set of
the commands N(t) is an execution sequence of t, and we say
that transaction t is an active transaction if the projection of
the subhistory H, to the set of the commands N(t) is not an
execution sequence of t.

Let E, = FH¢ PH, be an execution sequence of the transaction
t; and let H, be a subhistory. We say that P H, is a rest execution
sequence of the active transaction t with sublistory H, iff every
command of F H, appears in the subhistory i, and no commands
of PH; appear in the subhistory H,.

We say that a string of commands H is a candidate history with
a subhistory H, if H, is a prefix of II. The set of all candidate
histories with the subhistory H, is denoted PH(H,) and, we
define a subset PSH(H,) of PH(H,) as follows:

Let PH,, be a rest execution sequence of the transaction i,
with the subhistory H,,

PSH(H,)={H|H = H, - PHe, - PH, -...- PH.}, wlere q
is the number of active transactious in #,.

We define the rest of the readset and rest of the writesel for
active transactions in the subhistory H,, respectively denoted
RER(t,H,) and REW (¢, H,) to be the set of data items where

RER(t, H,) = {d;|d; is an element of the set d(C), where C;

is a read command of an active transaction t in the subhistory

— 262 —

H, and the read command C; is an element of a rest execution
sequence of the transaction t with the subhistory H,}

REW(t,H,) = {d;|d; is an element of the set d(C;), where
command C; is a write command of an active transaction t in the
subhistory H, and the write command C; is an element of a rest
execution sequence of the transaction t with the subhistory H,}

We define that RER(1,H,) = REW(t,H,) = ¢ for an ended
transaction t.

Let a read command C; of a transaction t; and a write com-
mand C; of a transaction ; appear in a subhistory H,. We say
that read command C; and REW (¢, H,) are in rw-conflictin the
subhistory H, iff d(C;) N REW (1, H,) # ¢ and , # 1.

We say that write command C; and RER(t,H,) are in rw-
conflict in the subhistory H, iff

d(C;)N RER(t,H,) # ¢ and ta # 1.

And, we say that write command C; and REW(t, H,) are in
ww-conflictin the subhistory H, iff d(C;)NREW(1,H,) # ¢ and
i # 1.

Let write commands C; and Cj appear in a subhistory H,
such that C; <g, C; and let there be no read command C, in the
subhistory H, such that C; <g, C, and d(Ci)nd(C;)Nd(C,) # ¢.
We say that write commands C; and é_,' are ww-changeable iff

We can make a set of data items CW which covers d(Ci)nd(Cj)
and satisfies the following condition;

Condition: For any data item d,, in the set CW, there exists
a write command C,, such that:

(1) The data item d,, is an element of d(Cy,).

(2) Cj <y, Cy.

(3) There is no read command C, such that the data item d,,
is an element of d(C,) and C; <y, C, <H, Cy.

Intuitively, if write commands C; and C; are ww-changeable
then all the data items of the set d(C;) N d(C;) are overwritten
without being read in the subhistory H,.

Two histories H; and H; are equivalent iff for every consistent
database state S and for all interpretations (except read and write
commands) of the transactions, #; and H, map the same final
database state. Intuitively, two histories are equivalent if they
have the same effect on the database for all interpretations of

transactions and all initial database states.

Proposition 1 Let Hy =z, - C; - z4 - C; - z3 be a history, and
commands C;, C; be ww-changeable. The history H) is equivalent

to the history Hy =z, - Cj - 25 C; - z3.

3 Serialization graph GS

A serial history H is a concatenation of exccution sequences of
all transactions in a certain order.

History H is serializable if there is a serial history which is
equivalent to history H. A subhistory H, is serializable iff there
exists a serializable history H and H, is a prefix of H. The decision
problem of serializability (whether or not history H is serializable)
is an NP-complete problem(1]. Then, we introduce a directed
graph GS(H,) =< Vg,, Eg, > in which acyclicity is the sufficient
condition for serializability of the subhistory JI,.

Let H, be a subhistory. We define the directed graph
GS(H,) =< Vy,, Ey, > of the sublistory H,, where

Vi,

Ey

= {1;| transaction ¢; appears in /,}
, = En,, ULy,

En,, = {(ti,t;){t; and t; satisfy conditions (1) or (2) below }

Ey,, = {(ti, t;)]t: and t; satisfy conditions (3) or (4) below }.

Condition (1): Conlxllaxlds Ci, and Cj, of transaction ¢; and
1; respectively appear in the subhistory H,. Commands C;, and
Cj, are in tw-conflict, and Ci, <u, Cj,-

Condition (2): Command C;, of transaction ¢; appears in the
subhistory H, and, C;, and RER(t, H,) or C;, and REW (¢, If,)
are in rw-conflict.

Condition (3): Write commands Cj, and Cj, of transactions
t; and {; respectively appear in the subhistory ,. Commands
Ci, and Cj; are in ww-conflict and are not ww-changeable.

Condition (4): The write command C;, of transaction t; ap-
pears in the subhistory H,, and the write command Cy, and

REW(t, H,) are in ww-conflict.

Proposition 2 Let H, = z, - C; - C; -z be a history, and let
commands C; and C; respectively be commands of transaction t;
and t;. If transaction t; is not reachable from transaction t; in
the graph GS(H,), then the history H, is equivalent to the history
Hy=12,-C;-C; z,.

Theorem 1 If the directed graph GS(H,) =< Vu,, En, > of the

subhistory H, is acyclic, then subhistory H, is serializable.

Proof We can define the total order <<g on the set of the trans-
actions Vy,. This total order is consistent with the |>z}rtial or-
der <<g S defined by the acyclic directed graph GS(H,) =<
Vii,, Ex, >. Let Sy, be the serial history of this total order <<g
and let H be a history which is an element of the sct PSH(H,)
where;

H=H, -H, -H, ... He,, and where if 1 < j then €¢; <<

ej. Using proposition 2, we can make the scrial history S, by

—263 —

T 3

Figure 1: The graph GS(H) of the Example 1.

rearranging the commands in H so as to become equivalent to

the serial history S,. O

Examplel Let t,..
that), = R {z} - W {u},

ty = Ro{a} - Wa{z, 9},

13 = Ry{z} - Wi{y,c},

1y = Ry{b} - Wy{y},

15 = Rs{u} - Ws{z},

., 15 be five straight line transactions such

and

H = Ri{z} Ro{a} -Wa{z,y} Rs{z} Ru{b} -Waly,c} Wi{y}
Rs{u} - Ws{z} W {u}.

Figure 1 shows the graph GS(H).

In this case, command W, and Wj are ww-changeable and the
history H is equivalent to the serial history

Sp = Ra{z} - Wa{y,c}- Rs{u} Ws{z} - Ri{z} Wi{u}- Ro{a}-
Wa{z,y} Ra{b} - Wi{y}.

History H is not in the class CPSR.

Let H be a history and GS(H) =< Vy,Eg >. A directed
graph CGS(H) =< Vy,CEpy > is defined as follows:

CEy = En U {(ti,1;) There exist two write commands (com-
mand C; of transaction t; and command C; of transaction t;) in
the history H such that C; <y C; and are ww-changeable in the
history H }.

For history H of the class CPSR, the graph CGS(H) =<
Vi, CEg > is acyclic. If graph CGS is acyclic, then graph GS is

also acyclic. From this, we get the following proposition.

Proposition 3 The class of history H whose graph GS(H) i3
acyclic includes properly the class of the CPSR.

4 The scheduler and protocols

Database D is partitioned into the data item sets D(s) for each
SDBS s. Let H, = C;-Cy - ... Cy, be a subhistory and C;(s)
be the restricted command to the D(s) of the command C; such
that d(C;(s)) = D(s) N d(C;). We define the subhistory of SDBS
s denoted H,(s) as follows:

HH,(s) = Ci(s) - Ca(5) - .. - Cm(s), d(Ci(s)) = d(C:) N D(s)
(1 <i<m). From HH,(s), we get the subhistory H,(s) of SDBS
s to remove the commands such that d(Ci(s)) = ¢.

All schedulers in the DDBS memorize the following three data:

(1) A subhistory H,(s) of the SDBS s.

(2) A directed graph SGS(H,(s)) = GS(H,(s))-

(3) List LR(s) of reachable sets R(t) from each transaction t
in the graph SGS(H,(s)).

For each read (or write) command, on-line schedulers check the
acyclicity of the graph GS(H,).

Let H, be the subhistory which was executed in the system
DDBS. When a command C is requested by a transaction t
of a SDBS s, each scheduler shall make a temporary graph
SGS(H,(s;) - C(si)). The schedulers check the acyclicity of the
graph GS(H, - C). I it is acyclic, then command C is accepted
and,

(1). Graph SGS(1,(s)) is updated to the graph SGS(I,(s)-
C(3)).

(2). The subhistory #,(s) is updated to the sublistory H,(s)-
C(s).

(3). Every reachable set R(t) is updated.

If the graph is acyclic, command C is rejected and placed in a
queue.

Graph SGS(H,,s), subhistory H,(s) of the SDBS s and all
reachable sets R(t) are preserved in their former states (the sched-
uler S(s(t)) does not update any data).

For all queued commands C,, every time a command is ac-
cepted, the scheduler tries to accept command Cy in the same
manner as in which command C,, was previously requested. Dur-
ing the acyclic check of command C in a M-transaction (called
the check phase of command C), all other commands are queued.

The schedulers use the following three messages for the preser-
vation of serializability:

(1). Message M 1(t,Ci, RER(t), REW (1)) : Where command
C; of a M-transaction t, and parameters RER(t) and REW(t) are
defined when command C; is accepted.

(2). Message M2(LRT,SI): Where LRT is the list of reach-

— 264 —

able sets from each M-transaction in the graph GS(Il, - Cy), and
Sl is the number of the scheduler which requested the broadcast-
ing of this message M2.

(3).
detected.

After a message M1(t,C;, RER(t), REW (1)) has been broad-

Message M3 : The information that a cycle has been

cast, thereafter all schedulers can send only messages M2 or M3
to check the acyclicity of command C;. All other messages are
queued. The command C check phase ends when message M3 is
broadcast or when all schedulers broadcast message M2 (there is
no cycle in the graph GS(H, - C;)).

Every scheduler S is assigned a number SI(S). These schedulers
are totally ordered by their number. We denote this order <s.
In the check phase of a command C, every scheduler S; sends a
request for message M2(or M3) to be broadcast. These broadcast

requests are sent in ascending order by scheduler number.

5 The algorithms DSA and analysis

5.1 The algorithms DSA for a command of a M-

transaction

For a command C of a M-transaction t, the scheduler S of 2 SDBS
s(t) sends a request for a message M1(1,C, RER(t), REW(1)) to
be broadcast if there are any data items in the set d(C) which are
not included in D(s(t)). If the set of data items d(C) is included
in D(s(t)), then our algorithms DSA treats it as a command of a
L-transaction.

Let TLR, BLR be lists of transaction sets. These lists exist in
each scheduler for working areas. Initially list BLR is an empty
list. The elements of each list for each transaction t are respec-
tively denoted TRT(t) and BLR(t). The element TRT(t) of the
list TRT is the subset of transactions reachable from transac-
tion t in the graph GS(H, - C). The element BLR(t) of the lList
BLR is a set of already broadcast transactions reachable from
transaction t in the graph GS(H, - C) .

Each scheduler executes the following algorithms according to
the message received. (M1, M2, or M3)

(Algorithm 1): When message M1(3,C,RER(t), REW (1))
broadcast by scheduler S, of the SDBS s, is received:

(1). Every scheduler S; such that d(C)ND(s;) # ¢, temporarily
makes;

(a). the subhistory TH(s;) = H,(s;) - C(s;) of SDBS i,
(b). the subgraph TGS(s;) = GS(H, - C(s;)) and

(c). the list TLR of reachable sets R(t) from each

transaction t in the set T'V of the subgraph 1'SG = (I'V,T'1).
(2). If SI(S;) is the smallest number of all the schedulers, then
scheduler S; sends a request for the message M2(TLR,SI(S;))
to be broadcast.
(Algorithm 2): When message M2(LRT,SI(S,)) broudcast
by scheduler S, of the SDBS s, is received :
Let LRT = R1(ty) - R1(t3) - ... R1(1;,).
For every scheduler S; except scheduler Sy,
begin
if the number SI(S,) is not largest number of all the schedulers,
then
(step1) for every M-transaction #; (1< j < k)
begin
BLR(1;) := BLR(t;) U R1(t;);
if RI(1;) =TLR(t;) # ¢
then TLR(1;) := R1(1;) U TLR(¢;)
end;
while there exists a M-transaction 1, such that
the M-transaction 1y is an element of T'L R()
and TLR(t,) — TLR(1,) # ¢ do
for all M-transactions do
TLR(ty) := TLR(t,) U TLR(1,);
(step2) if the set TLR(t) includes the transaction t itsclf
then scheduler S; sends a request for message M3 to
be broadcast when there is no other scheduler S;
such that scheduler S; has not broadcast message
M2 and the number SI(S;) <s SI(S;)
else
begin
if there is no other scheduler S; such that
scheduler S; has not broadcast message M2
and the number $I(S;) <5 SI(S;)
then
begin
for every M-transaction ¢
TR2(ty) := TLR(t4) —~ BLR(1,,);
the scheduler S; sends a request
for the message M2(TR2,SI(S;)
to be broadcast
end;
if the number S1(S,) is the largest number of
the all schedulers {no cycle detected}
then

begin

—265 —

H.(si) = TH(si);
(TH(s) = Hi(s:) - C(5:)}
SGS(H,(3:)):=TGS(s:);
{TGS(s:) = GS(H.(3:) - C(s:))}
LR(s;):=TLR,
for every M-transaction 1),
BLR(t) = ¢;
ends the check phase of the command C
end
end
end;
(Algorithm 3): When message M3 broadcast by a scheduler
S, of the SDBS s, is received :
begin
{or every M-transaction)
BLR(th) = ¢;
ends the check phase of the command C

end;

5.2 The algorithms DSA for a command of a L-

transaction

For a command C of a transaction t, if set d(C) of data items is
included in set D(s(t)), then scheduler S of SDBS s(t) temporarily
makes
(a). the subhistory TH(s) = H,(s)-C,
(b). the subgraph TGS(s) = SGS(H,(s) - C) and
(c). the list TLR of reachable sets R(t,) from each transaction
t in the graph TGS(s). And the scheduler S shall execute the
following algorithm:
(Algorithm 4):
begin
while there exists a transaction t; such that
transaction t; is an element of LR(1,)
and LR(1p) — TLR(ty) # ¢ do
for all M-transactions do
TLR(1p) := LR(t,) UTLR(ts);
if transaction t is not an element of the set TLR(t)
then no cycle detected
begin
H(s):= TH(s);
SGS(H,(3)):=TGS(s);
{TGS(s) = GS(Ha(s) - C)}
LR(s):=TLR,

(TH(s) = H.(s)-C}

end

else the command C is queued;

end.

5.3 The analyses

5.3.1 Analysis 1

Let C be a command of a transaction t which is executed in the
SDBS s(t) and let n be the number of SDBS in the DDBS. If
d(C) - D(5(1)) # ¢ then every scheduler shall broadcast message
M2 or M3 only once. So the maximum number of broadcasts in
the DDBS is n + 1 times for each command of a M-transaction

such that d(C) — D(s(1)) # ¢-

5.3.2 Analysis 2

Let REWW (1, H,) be the set of data items for active transac-
tion ¢ in subhistory H, and be defined as follows :

REWW(4, H,) = {di|d; is an element of the set d(C;), where
command C; is a write command of an active transaction t in
the subhistory H,, and write command C; is an element of each
remaining execution sequence of transaction t with the subhistory
H,.}

A data item in the set REWW (t, H,) will always be overwrit-
ten in the rest of subhistory H, unless a new transaction occurs.

Let write commands C; and C; appear in sublistory H, such
that C; <, Cj and let there be no read command C, in subhis-
tory H, such that C; <y, C, and d(Ci) N d(C;) N dC,) # ¢.

By extending the definition of ”ww-changeable” to
”eww-changeable”,

we can expand the class of the histories which will be accepted
by our algorithms DSA. But in the case ofd(C') — D(s(t)) = o,
message M2 must be broadcast.

We say that write commands C; and C; are ww-changeable iff

The write commands C; and C; are ww-changeable or satisfy
all of the following three conditions:

Condition (1). There is no read command Cy in the sublistory
H, such that d(C;) N d(C;)Nd(Cy) # ¢

Condition (2). For any active trausaction t in the subhistory
H,, d(C;)nd(C;)N RER(t, H,) = ¢

Condition (3). BEach data item in the set d(C5) N d(C;) is an
clement of set REWW (¢, H,) for active transaction t with the
subhistory H, such that Cj <y, Cy, oris an element in set d(C,)

for a write command in the sublistory #, such that C; <y, Cu.

— 266 —

5.3.3 Analysis 3

We assumed that messages M2 are broadcast according to a pre-
defined order, but this assumption can be changed to :

"Any message which has already been requested but has not
yet been broadcast can be cancelled Jjust before it is broadcast.”

If for example, scheduler S has received a request to broad-
cast message M2a but has not yet broadcast this message, and
message M2b is received from another scheduler, then scheduler
S will cancel the request for message M2a to be broadcast and
will make a new message M2c or M3 by using the algorithm A2.
Thus, each scheduler will broadcast message M2 only once to

cycle check a command.

5.3.4 Analysis 4

If all of the above assumptions are removed, then in the worst
case, the schedulers may be required to broadcast messages M2
n(n —1)/2 times. For example:

In the check phase of command C, each message M2 has an
integer. These integers are assigned in the following manner:

(1). The first message M2 broadcast during a check phase is
717,

(2).
sage M2(LRT1,N1) if message M2(LRT2,N2) has already been
received such that N2 > N1.

(3).
M2{LRT,N) to be broadcast such that N = N1+ 1 where N1

Each scheduler ignores the previously broadcast mes-

When each scheduler sends a request for message

is the message with the greatest number in the current check
phase.

If scheduler S sends a request for message M2 1o be broadcast,
and M2 is subsequently broadcast and is not ignored in the cur-
rent check phase, thereafter scheduler S will not request any more
meséages to be broadcast.

If message M2(LRT,N) is broadcast and is not ignored, then
in the worst case, there may exist N — 1 M2 messages which
were previously requested by the same scheduler. However, these

previously requested messages will be ignored.

5.3.5 Analysis 5

The information to be memorized in a SDBS increases in pro-
portion to the number of transactions. But if the in-degree of a
transaction 1 is zero in the graph SGS(s) =< V(s), E(s) > and
the transaction t is terminated, then we can remove the transac-

tion from graph SGS. The increase in information is resolved by

periodically broadcasting the set of ended transactions.

6 Summary

In concurrency control, the polynomial classes of the history may
be improved by another ww-changeable condition. But the algo-
rithms may become more complicated. Our scheduler protocol
for a distributed database system with broadcast communication
function may be applicable to the serializability preservation al-
gorithm for distributed database systems with broadcast comiuu-
nication function if an acyclicity check of the directed graph G is
executed where Graph G is the union of the local su bgraphs. One
such application would be the creation of a more simple algorithm

for the class CPSR.

References

[1] P.A.Bernstein, D.W.Shipman, W.S.Wong,” Formal Aspects
of Serializability in Database Concurrency Control”, [EEE

Trans. Software Eng., Vol.SE-5, No.3, pp.203-216, May 1979.

[2] M.A.Casanova, "The Concurrency Control Problem for
Database Systems”, Lecture Notes in Computer Science:

Springer-Verlag 1981.

B

K.P.Eswaran, J.M.Gray, R.A.Lorie, L.L.Traiger, »The No-
tions of Consistency and Predicate Locks in a Database Sys-

tem”, CACM Vol.19, No.11, pp.624-633, Nov. 1976.

(4

o)

H.T Kung, C.H.Papadimitriou, ”An Optimality Theory of
Concurrency Control for Databases”, Acta Informatica,

Vol.19, pp.1-11 1983.

5

P.A.Bernstein,

J.B.Rothnie, N.Goodman, C.A Papadimitriou, ”The Con-
currency Control Mechanism of SDD-1: A System for Dis-
tributed Databases (The Fully Redundant Case)”, IEEE
Trans. Software Eng.,Vol.SE-4, No.3, pp.154-168, May 1978.

[6

Z.Kedem, A.Silberschatz, ”Controlling Concurrency Using
Locking Protocols”, in Proc. 20t IEEE Sywmp. Found. Com.

Sci. pp.274-285, Oct. 1979.

P.L.Lehman, S.B.Yao, ”Efficient Locking for Concurrent Qp-
erations on B-Trees”, ACM Trans. Database System Vol .6,

No.4, pp.650-670, Dec. 1981

—267 —

{8] C.H.Papadimitriou, ”The Serializability of Concurrent
Database Updates”, JACM Vol.26, No.4, pp.631-653, Oct.
1979

[9] C.H.Papadimitriou, ”A Theorem in Database Concurrency

Control”, JACM Vol.29, No.4, pp.998-1006, Oct. 1982

[10] C.H.Papadimitriou, P.A.Bernstein, J.B.Rothnie, ”Some
Computational Problems Related to Database Concurrency
Control” in Proc. Conf. Theoretical Comp. Sci., pp.275-282,
Aug. 1977

[11] A.Silberschatz, Z.M.Kedem, ”A Family of Locking Pro-
tocols for Database Systems that are Modeled by Di-
rected Graphs”, IEEE Trans. Software Eng. Vol.SE-8, No.6,
Pp.558-562, Nov. 1982

[12] A.Silberschatz, Z.M.Kedem, ”Consistency in Hierarchical
Database Systems” JACM Vol.27, No.1, pp.72-80, Jan. 1980

[13] M.Yannakakis, "Issues of Correctness in Database Concur-

rency Control by Locking”, STOC pp.363-367, 1981

[14] M.Yannakakis, "A Theory of Safe Locking Policies in
Database Systems”, JACM Vol.29, No.3, pp.718-740, July
1982

[15] M.Yannakakis, C.H.Papadimitriou, H.T.Kung, ”Locking
Policies: Safety and Freedom from Deadlock”, in Proc. Conf.
Theoretical Computer Science, pp.286-297, Aug. 1977

[16] S. Harashima, T. Ibaraki, "Concurrency Control of Dis-
tributed Database Systems by Cautious Schedulers”, The
Transactions of the IEICE, Vol.J70-J, No.6, pp.1140-1148,
(1987)

— 268 —

