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Abstract
In previous papers, we introduced alternating multihead finite automata with con-
stant leaf-sizes (AMHFACLs) and investigated several properties of these automata.
Leaf-size, in a sense, reflects the number of processors which run in parallel in
scanning a given input word. AMHFACLs are more realistic parallel computation models
than ordinary alternating multihead finite automata because of restriction of the
number of processors which run in parallel to constant, In this paper, we will ex-
amine closure properties of the classes of sets accepted by one-way AMHFACLs and
one-way alternating simple multihead finite automata with constant leaf-sizes under
the operations of taking union, intersection, complementation, concatenation, Kleene

closure, reversal, or ¢ -free homomorphism.

1.Introduction

In [1] we introduce alternating multihead
finite automata with constant leaf-sizes
(AMHFACLs) and investigate several properties of
these automata. The main result of [1] are as
follows. (1) two-way sensing AMHFACLs can be
simulated by two-way nondeterministic simple
multihead finite automata, (2) for one-way
AMHFACLs, k+1 heads are better than k, and (3)
for one-way alternating simple multihead finite
automata with constant leaf-sizes (ASPMHFACLs) ,
sensing versions are more powerful than non-
sensing versions.

In this paper, we will examine closure
properties of the class of sets accepted by
AMHFACLs and ASPMHFACLs under the operations of
taking union, intersection, complementation,
concatenation, Kleene closure, reversal, or ¢ -
free homomorphism.

Section 2 gives terminologies and notations
necessary for this paper. In Section 3,4, we in-
vestigate closure properties of AMHFACLs,
ASPMHFACLs, respectively.

2.Preliminaries

The reader is referred to [2] for formal
definitions of an alternating multihead finite
automaton (AMHFA). A alternating simple multi-
head finite automaton (ASPMHFA) is an AMHFA with
the restriction that one head (called the
'reading head') can sense input symbols, while
the others (called the 'counting heads’) can
only detect the left endmarker "¢ " and the
right endmarker "$". When the heads of AMHFA
(ASf’I*II‘IFA) are allowed to sense the presence of
other hecads on the same input position, we call
such AMHFA (ASPMHFA) a 'sensing’' AMHFA
(ASPMHFA) .

A one-way AMHFA are defined as usual. A semi-
one-way ASPMHFA is an ASPMHFA whose reading head
can move only in one direction, but whose count-
ing heads can move in two directions. A one-way
ASPMHFA is an ASPMHFA whose reading and counting
heads can move in one direction.

A step of an AMHFA (ASPMHFA) M consists of
reading a symbol from the input string by each
head, moving the heads in specified directions
(note that any of the heads can remain station-
ary during a move), and entering a new state, in
accordance with the transition function. If one
of the heads falls off the input string, then M
can make no further move.

In this paper, to represent the different
kinds of one-way ASPMHFAs (resp. AMHFAs, sensing
AMHFAs) systematically, we use the notation Xl-
HFA (resp. Xk-HFA, XSNk-HFA), k2 1, where

(1) Xe {D,N,A,U}

D : deterministic

N : nondeterministic

A : alternation

U : alternating automaton with only

universal states

(2) Ye (SP,SNSP}

SP ! simple

SNSP : sensing simple
(3) k-H : k-head (the number of heads is k).

Furthermore,

& [XYk-HFA)={T| T=T(M) for some XYk-HFA M)
& [XSNk-HFA)={T| T=T(M) for some XSNk-HFA M}
&£ [Xk-HFA]={T| T=T(M) for some Xk-HFA M}.

In [1] we introduce leaf-size for AMHFAs and
ASPMHFAs, and define that 'leaf-size' is the
number of leaves of an accepting computation
tree with the fewest leaves. We modify this
definition as follows.
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Definition 2.1 Let L:N-R be a function,
where N denotes the set of all positive integers
and R denotes the set of all nonnegative real
nunbers. For each tree t, let LEAF(t) denote the
leaf-size of t (i.e., the number of leaves of
t). We say that an XYk-HFA (XSNk-HFA, Xk-HFA) M
is L(n) leaf-size bounded, if we give an input x
of length n to M, there is no computation tree
of M on x such that LEAF(t)>]| L{(n)| .

For each X€ {A,U}, Ye {SP,SNSP], ka1, we let
XYk-HFA(L(n)) (resp. Xk-HFA(L(n))), XSNk-
HFA(L(n))) denote L(n) leaf-size bounded XYk-HFA
(resp. Xk-HFA, XSNk-HFA). £ [XYk-HFA(L(n))] <&
[Xk~-HFA(L{n))], and £ [XSNk-HFA(L(n)]} are
defined similarly above.

3. Multihead Finite Automata

In this section, we will investigate closure
properties of the class of sets accepted by
AMHFACLs .

Lemma 3.1. Let T)={wi2w22---2wzp | (b21) &
Vi(1£ig 2b){wi€ {0,1}%3{0,1)*] & I i,j[wi=x3y
& w;=x3z & y# z]}. Then,

(1) Ti€ &£ [N2-HFA], and
(2) Ti@ St INSNK-HFA].

Proof. (1): The proof of (1) is omitted,
since it is easily seen.

{2): Suppose that for some kg 1, there exists
an NSNK-HFA M accepting Ti. Let Ti={Wi2w22---
2wab ) V(15 i% 2b)[wizweber-1=B(min(i,2b+1-i))2y
& ye {0,1]1%}.% It is easily scen that TiS Ti.
Thus, from assumption above, we can see that T
is accepted by M. On the other hand, we can
prove Tnifﬂ_\ﬁ{”.%j {NSNk-HFA] by using same tech-
nique as in the proof of Theorem 1 in [3]. This
is a contradiction. Q.E.D.

Theore 3.1. For each kZ 2 and each sZ 1, £
[Alk-HFA(s )], <& [ASNk-HFA(s)], \/ \/ £ [Ar-

14v<e0 15

HFA(t)], and N\ [ASNr-HFA(t)] are n:)lg closed

I1trcm et ca

under complementation.

Proof. It is shown in Theorem 4.4 in [1}] that
2 [ASNk-HFA(s) ] & & [NSN(ks)-HFA] (kZ 2, sz 1).
From this fact and Lemma 3.1, we can get that T
F e oL [ASNk-HFA(s)]. This completes the
proof of the theorem. Q.E.D.
Lemma 3.2. For each r2 2 and each i(15 i3
r(r+1)/2), Talr,i)={wi2w22---2wp | p=r({r+l) &
vi(lgigp)lwie {0,1}* & wizwper-il}. Then,
(1) for each rz 2 and each i(151i% r(r+1)/2),
Ta2(r,i)€ L [D2-HFA} and
(2)T2(ks,1)n T2(ks,2)N +--N Ta(ks, (ks+1)ks/2)
:Tz((ks+1)ks/2)¢£[ASNk-HFA(s)] (kz 2, s
2 1.
Proof. {(1): The proof of (1) is omitted,
since it is easy to prove.

(2): It is shown in [3], that Ta2((k+1)k/2)¢
£ [NSNk-HFA]. From this fact and Theorem 4.4 in
[1] (see above), we can get this lemma. Q.E.D.

We shall formulate two sufficient conditions
for a language L in order to be in £ [USNk-
HFA(s)]) for kZ 2 and sz 1. We shall need the
following languages for arbitrary natural f.

Cr(n)={ucw,CwWzC** ‘CWfCW(C" *-CW2CW, |

lul=fwil=n & u,wi€ {a,b}*} for each i(151i
SHHL¥
De(n)={vidvid| vi€Ce(n)};
E¢{n)={UCWICW2C" * *CWFCWf+1C* * *CW2f-1CW2 1 |
lul=lwil=n & u,w;€ {a,b}* for each i(151i
g2f) & 3j(18 S ) [Wo#EWaser-y]) and

Fe(n)={vicWwiCWzC* * ‘CWfCW(C* * CW2CW1dV2CW 1

CW2C-+rewrewse+ - ccwzewad | Ivil=lval=lwil
=n, vi,v2,Wwi€ {a,b}* for each i(1Zis f(
and vi# vz},

Let Ce¢="z/ Ce(n); De= o De(n); Ee= =/ Eeln) and

N0

Ff:‘(\.{»Fl(n) for arbitrary f=1,2,3,....

Lemma 3.3. Let L be an arbitrary set fulfill-
ing the following conditions:

(1) L =2 Cf U D¢

(2) L n (Ef U Fg) = ¢
Let f=k(k-1)s/2, where k2 2 and sz 1. Then L is
not in 2 [USNk-HFA(s)].

Proof. The proof is extension of the proof of
Theorem 1 in [4]. Let us assume that there ex-
ists a USNk-HFA(s') which recognize a set L
satisfying (1) and (2) where 1S5s’Ss. We need
the following notations.

A configuration of M working on the input
word w is (k+l)-tuple (q,ii,iz,...,ix) where q
is the state of the finite state control and i;
is the position of the j-th head on the input
word wW.

A prominent configuration is a configuration
of the computation tree on the input word x in
C¢UDfU E¢U F¢, from which M moves one of its
head on the symbol c¢,d or $.

The subsequence of prominent configuration of
the j-th path of the computation tree on the
word x is called Jj-pattern of x (denoted by
Pi(x)).

For each word x given to USNk-HFA(s) M, we
let (Pi(x),Pz({x),...,Ps+(x)) denote the pattern
of M.

Let USNk-HFA(s') M recognizing a set L which
satisfies (1) and (2) have t states. We shall
consider the initial part of computation tree of
M on the word y in C¢(n)U D¢(n), that begins in
the initial configuration and ends in prominent
configuration, in which one of the heads had
read the whole subword yi=uCwiCWzC: - CW(CW¢
c+--cwzew; of the input word y. [I.e., the ini-

¢ B(n) denotes the binary representation
of 1i.

;'ngor' any word w, |w| denote the length
of w.
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tial part of the computation tree is that part
ot the computation tree which is the same for
words y: and yidyid bacause M does not know
whether it is working on the word y: in C¢(n) or
on the word yidyid in D¢(n).]

Now, let us consider the number of all pat-
terns of the initial part of the computation
tree on the word y in Cs¢(n)U De(n) which we
denote p(n). If we note that |y.l=k(k-
1)s(n+l)+n, we can easily see that the number of
all configurations on word y: is bounded by

t{(k(k-1)s+1)(n+1)]&.

And so we obtain the following inequality

p(n) S [{tl(k(k-1)s+1)(n+1)]¥JxC(k-1)kas1)]a,
bacause no j-pattern of initial part of computa-
tion tree can consist more than k((k-1)ks+1)
prominent configurations and leaf-size of com-
putation tree is bounded by s’(g 1).

Since the number of all words y: from C¢(n)
is

2[(k-1)ka/201]n
there exists a pattern ¢ of the initial part of
the computation tree such that at least

2[(k—l)kl/20|]n/p(n)
different words y; from C¢(n) have the same pat-
tern ¢ of the initial part of the computation
tree.

Now we distinguish two following cases ac-
cording to the last prominent configuration

(q,ii,iz,...,ix) of the pattern o .

(1) i,>n for all j in {1,2,...,k}, i.e., all
heads had read the initial subword ue€
{a,b} .

(2) There exists some j in {1,2,...,k} such
that i;gn, i.e., at least one head had
not read the initial subword ue€ {a,b}*.
We shall below show that both (1) and (2) lead
to a contradiction.

(1) In this case we shall consider input
words yidyid in Ds(n) where y, has the pattern
o . Noting that there exist at least 2((k-
ks/zedn /p(n) different words y: with the
pattern ¢ , we obtain that there exist at least

m={2((x=1)ks/2¢1)n /p(n)]-[1/2(k-1)ks/2]
different words y,; with the pattern ¢ differing
from each other only in the initial subword u,
i.e., there exist at least m words y;=ucx, where
XTWICW2C* * *CWfCWsC- - *CWz2CwW; 1s fixed, with the
pattern o .

It is obvious that m=2n/p(n) is greater than
2 for sufficient large n, since p{(n) is bounded
by a polynomial. It means that for sufficiently
large n there exist two words from Cs(n) vizu,cx
and vz=uzcx, where ui# uz, with the same pattern
o of the initial part of the computation tree.
Since M accepts the word y=vdvid=u;cxdu;cxd in
D¢(n) and the state set of M consists of only
universal states, it follows that M must also
accept the word y’'=u cxdu,cxd which clearly
belongs to Fe(n).

(2) We shall consider the input word y in
Cr(n) in this case. Let us consider the whole
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accepting computation trees on all
2(k(k-1)8/241)a / p(n)

different words y=y: in C¢{(n) having the same

pattern ¢ of the initial part of the computa-

tion tree.

Let p’(n) be the number of all possible pat-
terns of accepting computation trees on words y
in C¢{n). We obtain the following inequality,

p'(n)S [[tl(k(k-1)s+1)(n+l) ¥}k t(x-1)kst1]a,
From this fact it follows that there exist at
least

2(k(k-1)-/:ol)n/p’(n)
different words y in C¢(n) with the same pattern
¢ ' containing the pattern ¢ as an initial sub-
sequence.

From Lemma 4.1 in (1] and the assumption (2),
we can see that for each input word in C¢(n),
there must be an ie such that both subword w:i of
the words y= uUCWICW2C' " CW|,C** CWICWEC" * "CW i,
c---cwzcw: are never read by any couple of
heads at the same time. It means that there ex-
ist at least

m=[20f+3)0/p’(n)]-[1/2¢f-1)02n]=28/p' (n)
different words in C¢{n) having the same pattern
¢ ', which differ from each other in the subword
wijonly.

It can be seen that mg 2 for sufficiently
large n and so there exist two words in C¢(n)

ViZUCWICWwaC- ’CHiOC‘ TCWE

CWEC* * *CWigC" * *CW2CW1 and
V2ZUCW1CW2C* * *CW{, C* * “CW¢
CWiC: " *CHi,C
with the same pattern ¢ ' of the accepting com-
putation tree, where wi #w(,.

By an argument similar to that in the proofs
of Theorem 1 in [3] and Theorem 1 in [4], it can
be shown that M must also accept the word

Y SUCWICW2C - *CWi C® " *CWf

**CW2CWy

CW{C***CWi{{jC"* *CWaCHW1,
which belongs to Ef(n). This 1s a contradiction.
Q.E.D.

Lemma 3.4. Let L be an arbitrary set fulfill-
ing the following conditions:

(3) L2 (e}-C¢ U [{e]}-D¢

(4) LN (le}-Ec U (el Fe ) =¢.

Let f=k(k-1)s/2, where k2 2 and sz 1. Then the
set L is not in £ (USNk-HFA(s)].

Proof. It is a matter of easy technical con-
siderations to show that if there exists a set L
satisfying the conditions of Lemma 3.1 such that
L€ £ [USNk-HFA(s)], then there exist a set L'
fulfilling the conditions of Lemma 3.3 such that
L' € £ [USNk-HFA(s)]. Q.E.D.

The following theorcm can be directly gotten
from Lemma 3.2 above.

Theorem 3.2. For each kg 2 and sg 1, £ [Ak-
HFA(s)] and £ [ASNKk-HFA(s)] are not closed under
intersection.



Theorem 3.3. For each k2 2 and sz 1, £ [Uk-
HFA(s)] and £ [USNk-HFA(s)] are not closed under
the following operations.

(1) intersection

{2) concatenation

(3) reversal

(4) Kleene closure

(5) union

(6) & -free homamorphism.

Proof. (1): Obvious from Lemma 3.2,

(2): Let us consider the following languages:

Li=(a,b}*cU (¢ },

Lz={udud | u€ (a,b,c}*}U (&},

Ge¢={wWiCWzC** CWiCWrC* * *CWzCW1 | Wi € {a,b)*

for 1 isflu (g} for i=1,2,3,...

Clearly, L,€ £ {D1-HFA], L:€ £ {D2-HFA] and
Ge€ £ [Uk-HFA(s)) for f3 k(k-1)s/2. On the other
hand, by an argument similar to that in the
proof of Theorem 2 in [4], we can see that the
set LiL2Gk(x-1)s/2 1s not in £ [USNk-HFA(s)].

(3): The set L:U {a,b}*cG(k-1)xs,2 does not
belong to £ [USNk-HFA(s)]), since it fulfills the
conditions of Lemma 3.3, but L%U (a,b)*cG(x-
1)kss2 belongs to £ [Uk-HFA(s)].

{(4): Let us consider the set Li=(e)}-L2U {a,
b} *cG(k-1)kss2U {e} which belongs to £ [Uk-
HFA{(s)]. On the other hand, by an argument
similar to that in the proof of Theorem 4 in
{4), we can see that L‘a satisfies the condition
(3) and (4) of Lemma 3.4 which implies that L,
is not in 2 [USNk-HFA(s)].

(5): It can be easily seen that the set L:
and {a,b)* cG(k-1)ks/2 belongs to 2 [Uk-HFA(s)]
for each kZ 2 and s 1 and that the set L:U la,
b}*cG(k-1)kss2 fulfills the conditions of Lenma
3.3.

(6): Clearly, the set L4={e}-L2U {g}-(a,
b} *cG(k-1)xss2 belongs to £ [Uk-HFA(s)] for each
k2 2 and sz 1. Let us define a & -free homomor-
phism h as follows: h(e)=h(g)=e, h(a)=a, h{b)=b,
h(c)=c, h(d)=d. Then T(L.«) satisfies the condi-
tion (3) and (4) of Lemma 3.4. Q.E.D.

When leaf-size is not restricted, the follow-
ing result holds.

Theorem 3.4. For each k2 2, £ [Uk-HFA] and £
[USNk-HFA) are not closed under coimplementation.

Proof. For otherwise, we suppose that 2 [Uk-
HFA] is closed under complementation. From
Theorem 1 in [5], we get that &£ [Uk-HFA]=co-.£
[Nk-HFA] for k2 1. It follows that for some set
L, if Le &£ [Nk-HFA] then Le& . [Uk-HFA] and L=Le
&£ [Uk-HFA] from assumption above. Thus, &£ {Nk-
HFAlS 2 {Uk-HFA]. On the other hand, from Corol-
lary 3 (3) in [5], we can get that £ [Uk-HFA] is
incomparable with £ [Nk-HFA] for each kg 2. This
1s a contradiction. The case of £ [USNk-HFA] is
proved by using similar argument as above. )

Q.E.D.

4. Simple Multihead Finite Automata

The closure properties under Boolean opera-
tions of ASPMHFAs are given in [6]. In this sec-
tion, we first summarise the closure properties
under Boolean operation of ASPMHFACLs derived
from the results in [6]. The following theorem
is obvious.

Theorem 4.1. For each Y€ (SP,SNSP}, k2 1, and
s 1, L [AYk-HFA(s)] is closed under union.

Theorem 4.2, For each Ye (SP,SNSP}, kg 2, and
sg 1, 8 [UYk-HFA(s)] is not closed under union.

Proof. The proof is given by Lemma 6.5 in
[6]. Q.E.D.

Theorem 4.3. For each Xe (A,U}, Ye (SP,SNSP/,
ke 2, and sg 1, £ [XYk-HFA(s)] is not closed un-
der complementation and intersection.

Proof. The proof is given by Lemmas 6.2, 6.3,
and 6.4 in [6]. Q.E.D.

We next investigate the closure properties of
ASPMHFA with only universal states (USPMHFA) un-
der operations of Kleene closure, reversal, and
& -free homomorphism.

Lemma 4.1. Let Ta={x€ (0,1}* | {IxIZ3) &
(1x] is odd) & (the center symbol in x is 'l"))
and T4=[a}*. Then,

(1) Ta, T«, TaTiz€ £ [DSP2-HFA] and

(2) TaTa=(T«T2)R¢ & [USNSPk-HFA(s)].

Proof. (l): We omit the proof of (1), since
it is readily proved.

(2): Let Ts=T3T4. Suppose that there exists a
USNSPk-HFA(s) M which accepts Ts. lLet u be the
number of states (of the finite control) of M
and R be the reading head of M. For each ng 1,
let

V(n)={0rwOrv arz | (we {0,1}%) & (lwl=n} &

(ri,r22 1) & {ri+rz=2n)).
For each x=0"w0f afz in V(n), let SC(z) be the
multi-set of semi-configumtions* of M defined
as follows.

SC(z)={{q,i1,12y...,ik-1) | c©=(2z,2n+1,(q,i,
i2,...,ik-1)) is a configuration of M just
after the point where R reads the initial
segment 0rw of ¢ z$).

Then, the following proposition must hold.

Proposition 4.1. For any two words z, z' in
V(n) whose initial segments 0®°w’s (of length 2n)
are different, SC{z)# SC(z').

[For otherwise, suppose that z=0nw0rf ar2
z'=0"3'0r afs (w# w') and SC(z)=SC(z’'). Let

t (q,i1,i2,..,1k-1) represents the state
of the finite control and positions of
k-1 counting heads of M, and is called
semi~-configuration of M.
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wawilwz, w!'=w; 0wz ([Wil=lw2i=t:05 tg n-1). We
then consider the following two words z=0tw,;1
wz20Par and z:=0%w;0wz0Pa* (p=n+t-|wz|, r=2(n-t)-
1) in V{(n). Clearly, z€ T, and so z is accepted
by M. It follows that z, must be also accepted
by M. This contradicts the fact that z; is not
in Tx.]

Clearly t(n)<u(4n+2)%-1, where t(n) is the
number of possible semi-configurations of M just
after the point where R reads the initial seg-
ments 0%w’s (of length 2n) of words in V(n). For
each z in V(n), the leaf-size of computation
tree of M on z is at most s8(2 1). Thus, for each
z in V(n), |SC(n)!g s. Therefore, letting

S(n)={SC(z) | ze V(n)}, it follows that for some
constants ¢ and c’

IS(n)}{ < ct(n)® < c'n(k-1)s,
As is easily seen, |V(n){=2®, From these facts,
it follows that for large n, [S(n)|<IV{(n)|.
Therefore for large n, there must be two words
z,z' in V(n) whose initial segments 0O®w's are
different such that SC(z)=SC(z'). This con-
tradicts Proposition 4.1. Q.E.D.

Theorem 4.5. For each kg 2, Ye (SP,SNSP}, 2
[UYk-HFA(s)] is not closed under the following
operations.

(1) reversal

(2) Kleene closure

(3) & -free homomorphisin

Proof. (1): Obvious from Lemma 4.1.

(2): Let Te=T3U T4. It is easy to see that Te
€ 2 [DSP2-HFA]. On the other hand, Te¢ N ({0,1}*
(a) *)=TaTa & N <€ [USNSPk-HFA(s)} (from Lemma
4.1). It follows from this fact and the fact
that o8 [USNSPk-HFA(s)]} is closed under union
with a regular set (It is easy to prove.), that
TeF il, witeel [USNSPk-HFA(s)]. This completes the
proof of (2).

(3): Let Ta={xe (0,1}¢] (Ixt23) & (Ix| is
odd) & (x has exactly one ’2’ as the center sym-—
bol of x}. Then it is readily proved that TiTs€
&2 [DSP2-HFA]. On the other hand, let h be the &
-free homomorphism defined by h(0)=0, h(1)=1,
h(2)=1, and h(a)=za. Then h(T4Ts)=TaTs¢ 3 \/.€
[USNSPk-HFA(s)] (s 1). This completes the proof
of (3). Q.E.D.

Theorem 4.6.For each Xe€ (A,U}, k2 2, and s
1, £ [XSPk-HFA(s)] is not closed under con-
catenation.

Proof . For each Q2 2, let L, ={a®*brinz 1) 2 .
It is easily seen that Lk-;€ &£ [DSPk-HFA]. If
Leck-1)rsv2)cck-1rse1)a¥® & [ASPk-HFA(s)] is
shown, then we completes the proof of the theo-
rem. The proof is extention of Theorem 1 in [7]).

For otherwise we suppose that there exists an
ASPk-HFA(s) M (k2 2, s2 1) accepting L((x-
1)s+2)((k-1)s+1)s which has m states. (Without
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loss of generality we ussume that the input tape
of M has no left endmarker.) For each input word
W in L((k-1)s+2)((k-1)8+1)s, there exists an ac-
cepting computation tree of M denoted by Tk(w).
We divide input word w into s subword. That is,
WIW Wz * *Wae

Without loss of generality, we assume that each
node of Tx(w) which is labeled by a
configuration with a universal state has ex-
actly two children. Then, because of the bounded
leaf-size s, there are at most s~1 nodes labeled
by configurations with universal state in Tx(w).
From this fact and the word w has s subwords
Wi's, there is a subword w; in the word w such
that on each computation path of Tw(w), there is
a sequence of steps which implies that M never
enters a universal state while reading the sub-
word wi. We let such subword w; be w¢, let e(15
eg s) be the number of sequence of steps during
M reads. the subword w¢ ,and let S(1), S(2),...,
S(e) be these e sequences of steps.

Let the subword wi(l1<£ i< s) be as follows.
WISY1Y2* ¥Y(k-1)8+1 (1S 1Z s)
YiSy=XiXz2°***X(k-1)e+2 (1518 (k-1)s+1)
Xizx=atbr - (15 ig (k-1)e+2).

For each i(l1gige) and each j(15 jS (k-1)s+1),
let Ni(j) be the number of counting heads that
reach the right endmarker $ while the reading
head R reads the y; in w¢, in the i-th sequence
S(i) of Twx(w). Since M has only (k-1) counting
heads and leaf-size s, it follows that
Ni(Jjo)=Nz2(ja)=--+=Ne(jo)=0 for some jo(l% joS

(k-1)e+2).
Consider the case when in Tu(w) R reads the
subword y;, such that Ni(Jje)=Nz(jo)=::+=Ne(Jjo)

=0. We fix an arbitrary number io (15 ioS (k-
1)e+2) and let

Xi, 8ig8iz-*ainb" (ai j=a, 15 jSn).
qu each j(15 jSe) and each symbol ai, g 4 let
q‘io ¢ be the state in which M is when R moves
onto ai g on the j-th sequence S(j). For each
symbol ai, g , we consider the e-tuple of states
as follows.

(Cl‘ion ,qlann ,---yqei,n )=Qi°a .
We call Qi,; above a multi-state of M.

A J-configuration of M is a (k+l)-tgple
(qi,b51,...,b5k) (denoted by c?) , where q} is
the state of finite control of M and b;n is the
position of the 9 -th head in S(j). An Jj-
increment is a (k+1)-tuple (q‘a, h}x. ...,hl,
where qi is the state of finite control of M and
each h}u is either 0 or 1. (Informally, the j-
increment describes moving the heads at one step
of computation in j-th sequence S(j).) Let
c‘f,c)u....,cﬁ be the subsequence of S(j),
where ct is a J-configuration when R reads the
symbol ai,: and cf is a j-configuration when R
reads the symbol ai n of Xi,=ai 1 @i 2+ ainbn.

¥t A configuration of M on w is a (k+1)-
tuple of a state of finite control and k
heads positions.



We say that the sequence of j-increments
dz.dfol,...,di‘-,, where

di=(al,biy -bji,...,bi% -bix)

if C‘i:(q{:bjl’--'lb:.“l) and
Chl:(QH\,bxfx‘ y--..b}l‘)

for each i(15ig g-1), is the sequence of j-
increments of c},c[.;.....Cf.

We let

d}, ,d;l on,...,d’h -1

di, bdi, e1,000,de, -2

: (1)

d‘i. ,.d'l, 0}:0"Jd:,-l
where df; ,dt; +1,...,dk; -1 is a subsequence of
S(j) and d, (dk, -1) is j-increment when M
reads the symbol aig 1 (aige) in S(Jj).
Let

dy, sdyarseeerdp,

A sy,

(fisa i<Bi158i-1

. P Vi(lgige))

de, odier s erdy,
be a subsequence of (1) , and is denoted by seg-
ment. If the length of d3 ,...,d] is shortest
among d}“ ,...,d(‘,‘ 's the'n we let ’the length of
d:‘ ....,dg‘ , be the length of the segment.

) For'each symbol ai, g, (Bi g ) (RuQz), let
dy,, (dt‘u' ) be j-increment when M reads symbol aig,
(ai,u,), and let Qi =Qi Then we say that
the segment

diy, sdugerseseady,
}ﬁu xdlﬂnu IR ’dllln (fSQ, 5055 8-1
. P Vi(lgise))

o ¥y o b

e d\ dE
Brg M Bpeer r ettt
is @-cycle. Futhermore, we say the following (k-
1)e+1l-tuple
fa ., Lo oy o g I
( 5 Ry, T obha,e.., ¥ oBhe, X hiz, 3 hYbs
3:1, 20, [ 5 14, 11,
byoog | e 4,
yeeay h2kyeooy 2 hlez, 21 h.e:l,...,}:. h’ek)
1=, 1:1, 1R, 1:he

is parameter of this Q-cycle.

Fact 4.1. If the (1) above can be written in
the form s.,p:1,S2,p2,%31, where s,;,s2,s3 are the
segments and pi,pz are the Q-cycle (for some
multi-state Q), then there is an accepting com-
putation tree of M which is constructed by
replacing si:,p1,82,p2,83 of Tu(w) by

S1,P1,pP2,82,83.

Since every segment with length at least me+l
contains a Q-cycle, by Fact 4.1, we have the
following.

Fact 4.2. There is a permutation of (1)
which can be written in the form

S191P148S24P2y e+ SeyPryScay (2)
where rgme, cach s; is a segment with length at
most me¢, each pi can be written in the form
pi=pi,pi,..,pi,where each pi is a Q-cycle with
length at most me and there is an accepting com-

putation tree of M on w which is constructed by
replacing (1) of Tu(w) by 81,P1,S2,P2s««+18c,Pr,
Srel.

Fact 4.3. Let pf’s be the Q-cycles from Fact
2. For (2), there is a parameter v=(Vi,Vz,...,
V(k-1)e+1) with v1>0 and 0g vigme for each i(1l
< iS (k-1)e+l), such that the number of Q-cycles
py with parameter v is at least (n-
(me+1)me)/(me(me+1)(k-l)eol).

Proof. Since the reading head crosses the io-
th subword a® of word y;, during the part of the
computation corresponding to (2), there are n
increments (in (2)) at which the reading head is
moved to the right. Clearly, at least n-(me+l)m¢
increments from these n increments are contained
in the cycles pit, because rgme and the length
of each s is at most me (see Fact 4.2.). This
implies that the number of Q-cycles pi with
parameters whose first component is greater than
zero is at least (n-(me+l)me)/me. Since the num-
ber of all different parameters, for the cycles
with length at most me, is at most (me+l)(k-
1)e+r1, there is a parameter v such that the num-
ber of cycles p‘l with pérameter v is at least
(n—(me+1)m¢)/(me(me+1)(i‘l)eﬁl)_ [

Since the number io (15 ieS (k-1)e+2) was
selected arbitrarily, by Fact 4.3, we have that
there is an accepting computation tree of M on w
with the sequence

u;,z_x,Uz,Zz,...,U(k-L)eoz,Z(k-l)ecz.

U(k-1)es+3y (3)
where, for each i(15ig (k-1)e+2), zi is the
segment corresponding to the part of this ac-
cepting computation tree at which the reading
head reads the i-th subword a® of word y; , and
zi is of the form (2), and each u; is a segment.
Further, by Fact 4.3, there are parameters
viz{vi,Vise..svik-17e+1) for each i(15 1% (k-
1)e+2), with v,>0 and 0L v;Sme for each i(lgi
< (k-1)e+2) and each j(15 j< (k-1)e+l), such
that the number of cycles with parameter vi is
at least (n-(me+1l)me)/(me(me+l)(k-1)e*l) in seg-
ment z, for each i(1% is (k-1)e+2). Clearly
there are rational numbers ri,ra2,...,C(k-1)es2
such that

(R-es2
3 rivi =0, (4)
(=1
where
0={0,0,...,0) and r;#0 for some i{l5i3
(k-1)e+2),

bacause the vectors vi# 0 are linearly indepen-
dent. Without loss of generality we can assume
that the ri's in (4) are integers.

Let w be the word as above. Now we consider
the word

WIY1t ¥, 1Y 5, Vi e1T Y (k=1)8e Ly
where

WY1 Y(k-1)s8¢1, .

Yi,zam bramnbe- - -antuncib® and ni=n+rivy
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for each i(15ig (k-1)e+2). (Note that all n;>0
for n large enough.) Since ri# 0 for some i and
vi>0 for all i (see above), we have that ni#n
for some i and therefore w'@ L((k-1)e+1)( (k-
1)s+1)s. On the other hand, by (3), (4) and

-ees .
I¥io1=2((k-1)e+2)n + 3 rivi =
2((k-1)e+2)+0 = lys, 1,

we have that there is an accepting computation
tree of M on w’ with the sequence u:,z},uz,2%
seeesU(k-1)e+2,2{k-1)e+2,U(k-1)e+3 Where segment
2y is obtained by inserting (if ri>0) or by
deleting (if ri<0) r; cycles wiht parameter vi
from segment zi. Therefore, w' is accepted by M.
This is a contradiction. Q.E.D.

Theorem 4.7. For k2 2 and s2 1, £ [ASPk-
HFA(s)] a.ndé“/m‘:éox [ASPr-HFA(t)] is not closed
under Kleene closure.

Proof. Let Ti={a™b®| nx 1). It is easily seen
that T;€ £ [DSP2-HFA]. On the other hand, it is
shown Lemma 4.4 in [1] that T:Q“\‘/ N/ £ [ASPk-
HFA(s)]. This completes theEFrlé(‘(;? of the
theorem. Q.E.D.

5. Conclusions

The closure properties of AMHFACLs and
ASPMHFACLs are summarized in Tables 5.1 and 5.2.
Symbol O (X, ? ) stands for closed (not
closed, unknown).

Almost results in Table 5.2 hold for semi-
one-way alternating simple multihead finite
automata with constant leaf-sizes. That is, the
symbol O with superscript 2 indicates the
result is only valid for one-way.
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Table 5.1. Multihead Finite Automata

U USN A ASN
comple. ? ? x X
union X X (o] O
inter. X X X X
concate. x X ? ?
Kleene x x ? ?
revers. X X ? ?
& -free X b ? ?

U : XZ{Uk-HFA(s)], USN
A : Z[Ak-HFA(s)], ASN Z{ASNk-HFA(s) ]
1. Z([Uk-HFA] and X (USNk-HFA] are not
closed under complementation.

L[USNk-HFA(s)]

Table 5.2. Simple Multihead Finite Automata

UsS P USNSP| AS P ASNSP
comple. X X X x
union X X O O
inter. x x X x
concate. x 2 ? X 2 ?
Kleene X b x 2 ?
revers. X X C 2 ?
& -free x X ? ? .

USP: L [USPk-HFA(s)], ASP: L[ASPKk-HFA{:. ,
USNSP: X [USNSPk-HFA(s)]

ASNSP: X [ASPSNk-HFA(s)]

2. Only valid for one-way (not hold for
semi-one-way).



