FTIHNITY)XAL 12-17
(1989. 11.2D)

Error-Free Image Compression with
Gray Scale Quadtrees and its Optimization

Martin J. Diirst and Tosiyasu L. Kunii

Department of Information Science, Faculty of Science
The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113 Tokyo, Japan

Abstract
GDF, the Gray scale Depth First expression, is a new method for the error-free compression
of gray scale images. It combines spatial hicrarchical subdivision (quadtrees) with gray scale
hierarchical subdivision, and achieves better compression than any previous hierarchical

method.

GDF is not limited to quadtrees. The structure of both the spatial and the gray scale
hierarchy are not restricted in any way. This leads to an algorithm that finds the optimal
gray scale hierarchy for any given picture in polynominal time, resulting in significant

additional compression.

1 Introduction

In image processing and computer vision, image
compression is an important application and a basic
tool for other, higher level tasks. As a tool, compres-
sion can reduce the amount of data to be processed at
higher levels like enhancement, matching, recogni-
tion, etc. As an independent application, it is very
useful in reducing bandwidth on communication
channels and storage requirements for mass storage.

Image compression methods can basically be
divided into two categories, approximate compression
and error-free compression. Approximate compression
reduces the amount of data as much as possible with a
tolerable quality reduction. Error-free compression
encodes the image so that it can be reproduced exactly.
Exact reproduction is very important for image
databases and fields such as law, and medicine.

Error-free compression rates are not very high.
There is no general type of image, and so each com-
pression method is appropriate for some class of
images, but hardly compresses or even expands
others. Also, the less significant bit planes of most
images contain a large amount of random noise,
which is difficult to compress in any way. However,
for large archives even a small improvement can
result in large savings in space and money.

In this paper we present a new way of gray scale
image compression based on quadtrecs. Section 2
gives a short overview on quadtrees, focusing on gray
scale quadtrees. In section 3, we introduce the bitwise
condensed quadtree (BCQ) and the gray scale depth
first expression (GDF), and give an outline of the
compression and decompression algorithms. Section 4
shows how the gray scale hierarchy can be optimized
to improve compression. Finally, section S contains
experimental results.

2 "Quadtrees for Gray Scale Images
An image of resolution r, size 2" - 27, and b bits per
pixel can be represented by a quadtree [Sam84] by

—115—

recursively subdividing the image square into four
subquadrants, thereby building a tree of outdegree four
where the root represents the whole image and the
leaves represent single pixels. This tree is called full
quadtree. If all the pixels in one quadrant have the
same value, the quadtree is condensed, replacing each
interior node whose children are all of the same value
by a leaf node.

For the image in fig. 1, with a resolution of r=2
and b=3 bits per pixel, the (condensed) quadtrec is
shown in fig. 2. Quadrants are ordered from left to
right and top down.

000} 001011011

00110011011] 011

010|011 100} 100

010} 011} 101} 110

a) b)

Figure 1. a) Gray scale image
b) Corresponding binary array.

001 001 011 011 100 110

Figure 2. Quadtree for the image of fig. 1.

There exist many ways to represent a quadtree
[Sam84]. The most compact of them (cf. [Tam84a])
is the DF-expression (Depth First-expression, here-
after simply called DF) [Kaw80], a sequence of sym-
bols resulting from a preorder depth first traversal of
the quadtree.

Some of the early works on quadtrees were mainly
concerned with gray scale images (e.g. [Kli76]).
However, for gray scale images, it is rare that even
four neighboring pixels all have the same color.
Condensation is much higher for binary quadtrees, and
thus the research on quadtrees concentrated on this
field.

There were several attempts to solve this problem.
Klinger et al. [Kl1i76] tried to allow condensation
based on statistical attributes like the standard de-
viation. Oliver et al. {O1i83] placed average values in
interior nodes. Kawaguchi et al. [Kaw83], after con-
verting pixel values to a Gray code, coded each bit
plane separately. Based on bintrees [Kno80], Tammi-
nen [Tam84b] developed a coding suited for so called
‘maps’, images that consist of rather large areas of
unique color, but where colors of adjacent areas arc
not related. Woodwark [Woo84] proposed a similar
scheme based on quadtrees. First proposed in
{Kaw80,p.30-31], Oliver et al. [Oli83] and Kunii et
al. [Kun86] presented slightly diffcrent variants of an
extension of DF to gray scale images. In [Kun86], a
family of quadtrees called G-quadtrees was also intro-
duced. Each G-quadtree uses a different number of
most significant bits (MSB), changing the amount of
condensation based on the needs of the application.
This work was extended to 3D and refined in [Mao87].
Depth First
(GDF)

3 Gray Scale
Expression

3.1 Definition

As mentioned carlier, for a gray scale image it is rare
that even in a small square of four pixels all pixels
have the same color. However, for a wide range of
images, adjacent pixels mostly have values close to
each other. Seen at a low gray scale resolution, an
image seems to consist of large areas of the samc
color. As the gray scale resolution is increased, we
have to increase the spatial resolution, too, although
for each (part of an) image the relation between gray
scale resolution and spatial resolution is different.

To integrate gray scale hierarchical subdivision and
spatial hierarchical subdivision for image compres-
sion, we introduce a new form of quadtree, called
bitwise condensed quadtree (BCQ). Starting from the
MSB, whenever all the first bits of all the children of
a node are the same, these bits are removed and a
corresponding bit added to the end of the entry of this
node. When we remove the last bit from a leaf, we of
course also remove the leaf itself. For our example,
the result is depicted in fig. 3. Parentheses denote the

end of an interior node, and indices the bit position of
the corresponding symbol.

(
00X Oldy Ok 1y(

AN AN NN

0313 I3 13 0313 03 13 003 003 Ol 103

Figure 3. BCQ for the image of fig 1.

Now we can define GDF as the sequence of the three
symbols 0, 1, and (, formed on a preorder depth first
traversal of the BCQ, where bits 0 and 1 are repre-
sented by the symbols 0 and 1, and a (is added after
the last bit of each interior node. The following is
GDF for our example, with blanks added for legi-
bility:

(o00(o111 011 01(0101 1(00000110

3.2 Proof of Error-free Decodability

We usc the BCQ to prove that an image encoded with
GDF can be decoded without errors. First, we will
show how to reconstruct the BCQ from GDF, and
then how to obtain the image from the BCQ. The key
1o decoding GDF is that every 0 or 1 can be indexed
by its bit position, as shown in fig. 3.

We note that every entry in a leaf node has to end
with 0p or 1, where b is the number of bits per
pixel, and every entry of an interior node ends with (,
and these are the only places where 0p, 1p, or (can
appear. Also, when going from the root of the tree to
any of its leaves, the bit position indices of the sym-
bols are passed in sequence, from 1 to b.

Thus we can always assign the correct indices to
the symbols being decoded, as we only need the
information of the already decoded parent nodes. Also,
we are always able 1o detect the last symbol of a node
and decide on the next node that has to be processed.
We can therefore reconstruct the trec exactly, and also
detect the end of the code string.

To reconstruct the original image from the BCQ,
we propagate the entrics from each interior node to all
its children, concatenating bits and eliminating paren-
theses, until we get the complete quadtree. As bits
have only becn condensed when they are the same for
all children, the original uncondensed quadtree is
reproduced exactly. Each leaf corresponds to a pixel of
the original image, and so the original image can be
reconstructed completely and without errors from
GDF.

—116 —

3.3 Binary Coding of the Three Symbols

Kawaguchi et al. [Kaw80, p.32] propose several ways
for the binary coding of the three symbols 0, 1, and
(. On the lowest level of spatial subdivision, there are
no (, and so 0 and 1 are each coded with one bit. On
higher levels, however, it is not clear which of the
three symbols is the most frequent and therefore
should have a one-bit code. Contrary to Kawaguchi et
al. but as Tamminen [Tam84b], we code (with one
bit, preserving the symmetry between 0 and 1. This
makes the maximal length of a 'bad’ image the short-
est, namely 227-(b+1/3) bits for an image of 22r.p
bits. An alternative is arithmetic coding [Wit87]. A
coding model would take into account the probabili-
ties of different symbols at different levels of spatial
and gray scale subdivision.

Adapting 10 (or 0 on the lowest level) for 0, 11
(or 1) for 1, and O for (, and coding the GDF of our
example image gives the following binary sequence.
For comparison, we also give GDF again:

(0 0(o011101 1 01 (0101 1 (00000110
010100011110111110110010111000000110

Over all, for this example we used 36 bits instead of
48, a saving of 25%.

3.4 Decoding Algorithm

We explain the decoding algorithm for GDF before
the coding algorithm because it is much simpler. It
basically follows the proof in section 3.3, but com-
bincs the analysis of the input and the expansion of
the tree, without building the BCQ.

The algorithm is easier to formulate with a recur-
sive procedure, but more efficient when implemented
with a stack. In both cases, each level of the recursion
or the stack corresponds to one level in the spatial
hierarchy. Each level keeps track of the position of
the upper left corner and the size of the square corre-
sponding to the present node, the number of the
subquadrant presently processed, and the level in the
gray scale hierarchy (=the number of significant bits).

For each node of the quadtree, in depth first
sequence, symbols are read until a parenthesis is
received or the number of significant bits reaches b,
and then the four subnodes are processed in turn. For a
node at the pixel level, the accumulated bits are writ-
ten to the corresponding position of the frame buffer.
For a full recursive formulation of the algorithm and
an outline of a hardware implementation , the reader is
referred to [Diir88].

3.5 Encoding Algorithm

Encoding an image to GDF is more complicated than
decoding, and cannot be compared directly with the
encoding of DF. The very first symbol of GDF
depends on the MSB of all pixels of the image. If all
of .them arc the same, the first symbol is 0 or 1,
otherwise, it is (. So in principle, we have to scan the
whole image before we can output anything (compare,
however, section 4.4).

—117 —

This makes it necessary to use two passes, working
bottom up in the first pass to decide on the number of
significant bits for each node, and top down in the
second pass to output the symbols. To store the
number of significant bits in all the levels but the
lowest one, a data structure similar to the explicit
quadtree of [Wo0082] is best used. The number of sig-
nificant bits in the lowest level is always b. Other-
wise, the comments of section 3.4 apply here, too.

4 Optimizing the Gray Scale Hierarchy

4.1 Basics

For the sake of simplicity, we presented GDF based
on quadtrees. However, it can easily be adapted to
trees with outdegrees other than four. Of particular
interest for image processing are bintrees [Kno80] and
octrees [Sam88]. In general, any tree structure is
possible, as long as the encoder and the decoder agree
on it. The same applies to the gray scale hierarchy.
Also it is possible to deviate from a pure depth first
traversal. This variations and their various applica-
tions such as progressive transmission and a fast
hardware encoder, are outlined in [Diir88]. Here we
concentrate on increasing compression by optimizing
the gray scale hierarchy.

We present an algorithm that, with respect to a
given image and a given binary coding of the symbols
of GDF, optimizes the gray scale hicrarchy. It calcu-
lates, in time O(22"+g3), the gray scale hicrarchy that
leads to the highest compression. 227 is the number
of pixels in the image, and g=2% is the number of
gray levels. The example image we will use, and its
unoptimized gray scale hierarchy, are shown in fig. 4.

a) b)

Figure 4. Example image for optimization (a)
and its gray scale hicrarchy (b).

At first, it may seem difficult to find an efficicnt
algorithm for the problem at hand because of the
complicated relationships between the spatial-and the
gray scale hierarchy. The key idea is to consider all
possible gray scale intervals. First, the quadtree is
traversed and for each node, the gray scale interval it
covers is calculated, and the number of nodes of each
interval is counted. Next, nonexistent gray levels are
eliminated and the number of independent trees for

each interval is calculated. The actual optimization
then decides the best splitting point for each interval
working bottom-up.

In the next two subsections, the formal base of
the algorithm is presented, along with the actual
values for the example image of fig. 4. Due to space
constraints, there is no program code, and almost no
comments for the example, but we trust that the
readers can work this out for themselves.

4.2 Interval Statistics

To formalize the algorithm, we first note that the
number of parentheses is independent of the gray scale
coding and therefore parentheses can be ignored in the
optimization algorithm. Then we denote by L; the
number of leaves of the (full) quadtree with gray level

i, and by N{- (i<j) the number of nodes whose

childrens' smallest gray level is i and whose largest
gray level is j. N can be represented as a triangular
matrix.

Inspecting L, gray levels that are not used at all
can be eliminated in time O(g). As the number of
actually used gray levels is bounded by g, we will
continue to use g for simplicity.

Now we can calculate the number T: of indepen-

dent trees in the quadtree that contain leaves in the
interval form i to j. Each leaf in such a tree can be
considered originally as an independent tree, and each
internal node connects four subtrees to one tree and
thus reduces the number of trees by three. Therefore,

i J J J
T=3Lg-3 % SN, M.
k=i k=i =k

Té is also the number of root nodes of independent

trees with the corresponding interval and thus the
number of nodes with that interval whose parent does
not fit in that interval.

Actually, L and N can be integrated from the start
into N* so that

N=L; -3 M ad
N*{=—3-N{ @i<)) (2) and so
A
=3 Y+t o))

k=i I=k

N* needs O(g2) storage and can be obtained in a
simple first-depth traversal of the quadtree using
0O(2<") time and O(r) storage. For each quadtree node,

the corresponding N*f is incremented by 1 for leaf
nodes and by -3 for interal nodes. These values can

be adjusted for trees or nodes with outdegrees other
than four. T can be calculated from N* in time O(g2).

New space is not needed as the values of T can over-
write those of N*. Fig. 5 shows the values of N* and
T for the example image of fig. 4, together with some
values introduced in the next subsection. There is no
pixel with gray value 6, and so it has been eliminated.

o P i
)RR
1 SRR
d HEEE
1 s HEE
s 0 152
Vi) .

Figure 5. Values of N*, T, D, and R.

4.3 Finding the Optimum
The number of symbols (excluding paremh_escs)

needed to code all trees in a given interval, Sf, can

now be expressed as follows. For an interval with
only one gray level, there is no information necessary
to distinguish this gray level from others, and so

S;=0 @.
For larger intervals, S{ depends on the division point

Df (iSDf<j) of the interval, defined as the top gray

valuc of the lower subinterval. Setting k-—-D{, Sji can

be calculated as
J _ ok j k J
§i=8i + S8 +T; + Ty O

where the first two terms represent the number of
symbols to code all the trees of the two subintervals
independently, and the later two terms correspond to
the number of symbols, one for each independent tree
of the subintervals, to code the subinterval the tree
belongs to.

—118 —

Optimization is carried out by selecting Df so that Sf

is minimized. The optimum values of Si are

calculated for small intervals first, so that they are
available when deciding the splitting values of larger
intervals. The number of symbols needed for the

whole tree is obviously 5’361. The optimal gray level
hierarchy can be constructed from a subset of D,
starting with Dg(-)l. The number of additions in (5)
can be reduced by introducing

R": = Sf + T/ so that

i

J k J
S; =R, + Ry ©).
Again, the R values can overwrite the T values, but
separate space is needed for D. The time for this step

is dominated by the number of the evaluations of (6),

g
which is of the form Y k-(g-k) and thus O(g3), so
k=1
that the whole algorithm optimizing the gray scale
hierarchy uses time 0(22’+g3). D and R are shown in
fig. 5. A star means that there are other division
values that lead to the same optimal coding for the

interval. The value in parentheses is Sg, the number
of symbols (without parentheses) needed for the
optimal coding of the example image, and not Rg,

which has no meaning. The final gray scale hierarchy
is shown in fig. 6.

Figure 6. Optimal gray scale hierarchy.

Below are the GDF based on conventional (upper row)
and optimal (lower row) gray scale hierarchy. For this
example, we saved five symbols. As we also have to
transmit the gray levels not used (g bits) and the
structure of the optimized gray scale hierarchy (<2g
bits), optimization may not pay of here. As we will
show in section 5, this is different for actual images.
(00(0101 (011 111 100 101 0(00 10 01 10 100
(0000101100 11 01 10 0(001 011 101

—119 —

4.4 Considering Binary Coding

Above, only the number of symbols was considered,
regardless of the fact that a symbol, depending on its
position, may be coded with one or two bits (see
section 3.3). The algorithm can be modified to take
into account the number of bits per symbol as
follows. First, imagine that separate statistics are
collected for nodes at each level in the spatial
hierarchy, and that (5) is extended, summing over the
levels, each level weighted appropriately. The
weighting factors can then be propagated to the first
step similar to (2). The resulting increments for N*
become 1 for pixel nodes, -2 for the next higher level,
and -6 for all other nodes. In this way, the later steps
of the algorithm, and thus its complexity, remain the
same.

The gray level hierarchy is not limited to a binary
tree. Of particular interest are ternary trees because
they permit the four symbols 0, 1, 2, and (to be
coded with exactly two bits. Finding the optimal gray
level hierarchy in this case is still possible in time
O(g3). First, D is calculated for the binary subdivi-
sion. When deciding on the division of an interval
nto three subintervals, extensive search is necessary
only for one division point. The optimal second divi-
sion point is identical to the binary division point for
the remaining interval, as there are just two terms
more in (5) or one more in (6).

Generalizing this, it is possible to {ind the opti-

mal n-ary gray scale coding with O(g3-log n) time and
O(¢g2log n) space, and all gray scale codes up to n-ary
with O(g3-n) time and O(g2-n) space. It is also
possible to combine binary (for the lowest level of
the spatial hierarchy) and ternary (for the upper levels)
trees. We have to leave the details of this to the
reader.
A fractional number of bits for each symbol, as in
the case of arithmetic coding, is also possible. How-
ever, the algorithm is limited in the sense that each
binary coding has to be optimized separately, and all
symbols except (have to be coded with the same
number of bits.

4.5 Related Work

Optimizing the gray level hierarchy can be compared
to the normalized or optimal quadtree of [Li82] and
[Gro83] on the spatial side. However, there only the
position of the quadtree grid is optimized, which will
not give substantial savings if there are no big
rectangular blocks, whereas we are optimizing the
structure of the gray scale hierarchy.

Trying to optimize the structure of the spatial
hierarchy will lead to something like the k-d-tree
[Ben75]. But for usual images, the resolution r and
the number of bits per pixel b arc of about the same
order, and so the gray scale hicrarchy (g = 20 lcaves)
is much smaller than the spatial hierarchy (227
leaves). Thus to improve compression, changes to the

gray scale hierarchy are more promising than changes
to the spatial hierarchy.

The optimization algorithm presented above also
can lead to a new approach to segmentation. The first
bit of the optimized gray scale divides the image into
two parts, a lighter and a darker one, in such a way
that the dividing line between the two parts is short
and the the two parts themselves are as homogeneous
as possible. However, there is still much work to be
done before we will know for what kind of applica-
tions this approach is successful.

5 Experiments

To evaluate the compression ratio of GDF, and the
improvement obtained by the gray scale optimization,
we compared it with several other gray scale image
compression algorithms. The programs were imple-
mented in the programming language C on a VAX-
750™ under Unix™. The other methods tested were
the bitwise DF of [Kaw83], LZW [Wel84], and
predictive Huffman coding [Ros82,pp.181-188].

LZW was used as implemented in the UNIX™
commands compress and uncompress. Pixels werc
reordered according to the Morton sequence to satisfy
the requirements of [Lem86,p.8].

For comparability, the approach of Kawaguchi et
al. [Kaw83], which transforms pixels to a Gray code
and then uses DF for every bit plane separately, was
modified to allow error-free compression.

Predictive Huffman coding was implemented in its
simplest form [Ros82,p.182,(172)]. Whereas the
other methods are based on the principle of spatial
hierarchical subdivision, this method is scan line
oriented and serves as a reference point.

The results of the experiments are shown in table
1. The images used are taken from version 1 of the
Standard Image Data Base (SIDBA) [Ono79], which
includes many well known images. Therefore, we
refrain from including the images in this paper. For
the girl and the couple, sce e.g. [Hun79], for the
moon surface, [Ros82,p.160], and for the acrial,
[Lec80,fig.1.a]. In table 1, N® refers to SIDBA
version 1, and GDF, Gopt, DF, LZW, and Huff
denote the algorithms as explained above. For all
images, r=8 and b=8. Compression is given as

size gf compres;ed image 100%,
size of full image
so that smaller values indicate better compression and
values above 100% indicate that the image is
cexpanded rather than compressed. In the case of Gopt,
the size of the compressed image includes the data
necessary to transmit the gray scale hierarchy.

N® | Name GDF [Gopt | DF | LZW | Huff

1] Girl 73.3]59.5 | 77.2] 76.7] 64.0

5| Couple [64.8 |57.2 |68.5 | 74.3] 61.6

10 | Moon 82.0 |71.8 |83.1 | 94.1] 69.9

11 | Aerial 88.6 182.3 196.6 |106.7] 77.8

Table 1. Compression rate (units: %).

From table 1, we see that GDF performs clearly better
than previous methods based on spatial hierarchical
subdivision, and the gray scale optimization consider-
ably improves GDF. This is especially obvious if we
compare saved space instead of compression ratios.
The other quadtree bascd methods mentioned in
section 2 are either not suited for continuous tone
images or clearly less efficient in any case.

Predictive Huffman coding, though in its simplest
version, performs more or less equal to the optimized
GDF. However, as a scan line oriented method, it is
not usable in cases such as progressive transmission.
Its better performance is mainly due to its efficiency
for textures, while GDF is oriented towards smooth
images. LZW is also suited for textures, but is ineffi-
cient because every gray value is treated indepen-
dently.

For all the methods, fine tuning of the parameters
and changing from algorithms working with bits as
their smallest units to arithmetic coding [Wit87]
could give better results, but it is doubtful whether
this would change the overall ranking.

6 Conclusions

In this paper, we presented GDF, the Gray scale
Depth First expression, a new way of error-frec image
compression combining the concepts of spatial and
gray scale hicrarchical subdivision. An algorithm for
the optimization of the gray scale hierarchy further
improved the compression rate and proved the validity
of our approach of combining both hierarchics. For
future research, we intend to concentrate on applica-
tions, like progressive transmission, segmentation,
and implementation in hardware.

Acknowledgements

We would like to thank Prof. Satoru Kawai of the
Colicge of Arts and Sciences of the University of
Tokyo, Issei Fujishiro of the University of Tsukuba,
and Xiaoyang Mao and Yoshihisa Shinagawa of the
Kunii Laboratory for interesting discussions and
comments, and Prof. Masao Sakauchi of the
Multidimensional Image Processing Center, Institute
of Industrial Science, University of Tokyo, for
providing the image data for our experiments (cf.
[Ono79)).

— 120 —

References

[Ben75]

[Diir88]

[Gro83}

[Hun79]

{Kaw80]

{Kaw83]

[K1i76]

[Kno80]

[Kun86]

[Lee80]

[Lem86]

[Li82]

[Mao87]

Bentley, J.L. Multidimensional Binary
Search Trees Used for Associative Search-
ing. Comm. ACM 18, 9 (Sept. 1975),
509-517.

Diirst, M.J., and Kunii, T.L. Error-Free
Image Compression using Gray Scale
Quadtrees. Technical Report 88-024, De-
partment of Information Science, Faculty
of Science, University of Tokyo, Dec.
1988.

Grosky, W.I., and Jain, R. Optimal
Quadtrees for Image Segments. IEEE
PAMI 5, 1 (Jan. 1983), 77-83.

Hung, St.H. A Generalization of DPCM
for Digital Image Compression. IEEE
PAMI 1, 1 (Jan. 1979), 100-109.

Kawaguchi, E., and Endo, T. On a Method
of Binary-Picture Representation and Its
Application to Data Compression. IEEE
PAMI 2, 1 (Jan. 1980), 27-35.
Kawaguchi, E., Endo, T., and Matsunaga,
J. Depth-first expression viewed from
digital picture processing. IEEE PAMI 5,
4 (July 1983), 373-384.

Klinger, A., and Dyer, C.R. Experiments
on picture representation using regular
decomposition. Computer Graphics and
Image Processing 5 (1976), 68-105.

Knowlton, K. Progressive Transmission
of Grey-Scale and Binary Pictures by
Simple, Efficient, and Losslcss Encoding
Schemes. Proc. IEEE 68, 7 (July 1980),
885-895.

Kunii, T.L., Fujishiro, I., and Mao, X. G-
quadtree: A Hierarchical Representation of

Gray-Scale Digital Images. The Visual
Computer 2, 4 (Aug. 1986), 219-226.

Lee, J.-S. Digital Image Enhancement and
Noise Filtering by Use of Local Statistics.
IEEE PAMI 2, 2 (March 1980), 165-168.

Lempel, A., and Ziv, Jacob. Compression
of Two-Dimensional Data. IEEE Trans. on
Information Theory 32, 1 (Jan. 1986), 2-8.

Li, M., Grosky, W.I, and Jain, R. Nor-
malized Quadtrees with Respect to
Translations. Computer Graphics and Im-
age Processing 20, 1 (Sept. 1982), 72-81.

Mao, X., Kunii, T.L., Fujishiro, 1., and
Noma, T. Hierarchical Representations of
2D/3D Gray-Scale Images and Their
2D/3D Two-Way Conversion. IEEE
CG&A 7, 12 (Dec. 1987), 37-44.

—121 —

[Oli83]

[Ono79]

[Ros82]

[Sam84]

[Sam88]

[Tam84a]

[Tam84b]

[Wel84]

[Wit87}

[Woo082]

[Woo84]

Oliver, M.A., and Wiseman, N.E. Opera-
tions on Quadtree Encoded Images. The
Computer Journal 26, 1 (Jan. 1983), 83-
91.

Onoe, M., Sakauchi, M., and Inamoto, Y.
SIDBA Standard Image Data Base. MIPC
Report 79-1, Multidimensional Image
Processing Center, Institute of Industrial
Science, University of Tokyo (March
1979).

Rosenfeld, A., and Kak, A.C. Digital Pic-
ture Processing, Second Edition, Volume
1, Academic Press, New York, 1982.

Samet, H. The Quadtrec and Related Hier-
archical Data Structures. ACM Computing
Surveys 16, 2 (June 1984), 187-260.

Samet, H. and Webber, R.E. Hierarchical
Data Structures and Algorithms for Com-
puter Graphics, Part I: Fundamentals, and
Part II: Applications. IEEE CG&A 8, 3
(May 1988), 48-68, and 4 (July 1988), 59-
75.

Tamminen, M. Comment on Quad- and
Octtrees. Comm. ACM 27, 3 (March
1984), 248-249.

Tamminen, M. Encoding Pixel Trees.
Computer Vision, Graphics, and Image
Processing 28 (1984), 44-57.

Welch, T.A. A Technique for High-
Performance Data Compression. IEEE
Computer 17, 6 (June 1984), 8-19.

Witten, [.H., Neal, R.M., and Cleary, J.G.
Arithmetic Coding for Data Compression.
Comm. ACM 30, 6 (June 1987), 520-
540.

Woodwark, J.R. The Explicit Quad Tree as
a Structure for Computer Graphics. The
Computer Journal 25, 2 (March 1982),
235-238.

Woodwark, J.R. Compressed Quad Trees.
The Computer Journal 27, 3 (May 1984),
225-229.

