TIIYXL 1213
(1989. 11.21)

Ay Optimal Alsorithm
for Finding All the CliguesX*

Etsuji Tomita Akira Tanaka*t

Haruhisa Takahashi

Department of Communications and Systems
The University of Electro-Communications
Chofugaoka, Chofu, Tokyo 182 Japan

Abstract

We present an algorithm for finding all the cliques of an undirected

graph.

It is a very simple backtracking searching algorithm, whose

basic techniques are based upon Bron and Kerbosch's, and it outputs

the cliques found in a tree-like form.
O(2 8/1.89..)=0(1.44... n) for an n-
This is optimal with respect to n since there exist up to
in an n-vertex graph. It

case time complexity is O(3 2/3) =
vertex graph.
3 #7/3 cliques

Then we prove that its worst-

is noted that a slight

modification of this algorithm gives an O(2 #/2.98)-time simple algorithm

for finding only one maximum clique.

1. Inmnmtroduction.
A maximal complete subgraph
of an undirected graph G is

called a cliqgue. A set of
vertices of a clique of the
complementary graph G is a

maximal independent set of G.
Finding all the cliques or all the
maximal independent sets of a
given graph is a fundamental
problem in the theory of graphs

and has many diverse
applications.
¥This work was partially

supported by Grants-in-Aid for
Scientific Research Nos. 60550259
and 62550259 from the Ministry of
Education, Science and Culture,
Japan.

¥*Presently with TOYOTA Motor
Corporation. :

Then a number of algorithms
have presented and
evaluated experimentally or
theoretically. Among them,
Tsukiyama et al.[TIAS] presented
an algorithm for generating all

been

the maximal independent sets in a
graph G in O(nm) time per maximal
independent set, where n and m
are the numbers of vertices and
edges of G,
Furthermore, Lawler et al. [LLK]
generalized its result. In
addition, Chiba and Nishizeki{CN]
improved Tsukiyama et al.’s
algorithm much to have a more
efficient one for listing all the
of G in O(a(G)m) per
clique, where a(G) is the
arboricity of G with a(G)g O(m'/2)
connected graph G.
time

respectively.

cliques

for a
any nontrivial
was ever

However,
complexity analysis

given for no algorithms with
respect to n, the number of
vertices, except those given
experimentally [BK], [J],
[RND,p.390}. The time complexity
analysis of this kind is especially
of interest when it is compared
with the result by Tarjan and
Trojanowski [TT] who gave an O
2 n/3)~time algorithm for finding
only one maximum independent
set, or that by Robson [R] who
showed an 0(2 ©¢-.-276n)-time
algorithm (which uses exponential
space) for the same problem.

Now we present here an
algorithm for finding all the
cliques of an undirected graph
whose basic techniques are based
upon Bron and Kerbosch([BK].
Then we prove that its worst-case
running time complexity is O(3
2/3)=0(2 n/1.89...) for a graph
with n vertices. This is the
optimal result with respect to n,
since there exist up to 3 #/3=3 ¥
cliques in a graph with n=3k
vertices as shown by Moon and
Moser[MM].

At the end of this report, we
also present some of our new
results which are relevant to this
problem.

2. Preliminaries.

[1] Throughout this paper, we
consider a simple undirected graph
G=(V,E) with a finite set V of
vertices and a finite set E of
unordered pairs (v,w) of distinct
vertices, called edges. A pair of
vertices v and w are said to be
adjacent if (v,w)EE. We call G
=(V,E) with E ={(v,w)E VX V| v#
w, and (v,w)& E} a complementary
graph of G.

[2] For a vertex veV, let I (v)
be the set of all vertices which
are adjacent to v in G=(V,E), i.e.,
T (v)={we V]| (v,w)EE} (PV).
[3] For a subset RCV of vertices,
G(R)=(R,E(R)) with E(R)={(v,w)ERX
R| (v,w)€ E} is called a subgraph
of G=(V,E) induced by R. For a
gset R of vertices, | R| denotes
the number of elements in R.
[4] Given a subset QC V of
vertices, the induced subgraph
G(Q) is said to be complete if
(v,w)e E for all v, weQ with v#
W If this is the case, we may
simply say that Q is a complete
subgraph. In particular, if a
complete subgraph is maximal,
then it is called a clique. A
subset RCV of vertices is said to
be independent if (v,w)&E for all
v,WER. Here, QCV is a clique of
G if and only if Q is a maximal
independent set of the
complementary graph G .

3. The algorithm.

We present a backtracking
searching algorithm CLIQUES for
finding all the cliques of a given
graph G=(V,E) (V# ¢) that is
essentially based upon Bron and
Kerbosch[BK].

Here we introduce a global
variable Q@ of a set of vertices
which constitute a complete
subgraph so far found. Then we
begin the algorithm CLIQUES by
letting Q:=¢ , and extend it step
by step by applying a recursive
procedure EXTEND to V and its
succeeding induced subgraphs
searching for larger and larger
complete subgraphs until they
reach maximal ones.

Let Q={p1, Ppz -+, pa}l be found

to be a complete subgraph at
some stage, and consider a
subgraph G(SUBG) which is
induced by a set of vertices

SUBG

VA T (p1)N T (p2)Ne«NT (pa)
where SUBG=V when Q=¢ at the
initial stage. Then apply the
procedure EXTEND to SUBG
searching for larger complete
subgraphs. If SUBG=¢ then Q is
clearly a maximal complete
subgraph, i.e., a clique.
Otherwise, QU {q} is a larger
complete subgraph for every q€&
SUBG. Then consider smaller
subgraphs G(SUBG4,) which are
induced by new sets of vertices

SUBGq = SUBGN T (q)
for all g€ SUBG, and apply
recursively the same procedure
EXTEND to SUBGq to find larger
complete subgraphs containing QU
{q}.

Thus far we have shown
only the basic framework of the
algorithm for finding all the
cliques (with possible
duplications). This process can
be represented by the following
search forest, the collection of
search trees: The set of roots of
the search forest is exactly the
same as V of the graph G=(V,E).
For each q€& SUBG, all vertices in
SUBG4¢=SUBGN T (q) are sons of q.
Thus, a set of vertices along a
path from a root to any vertex of
the search forest constitutes a
complete subgraph.

Now we proceed to describe
two methods to prune unnecessary
parts of the search forest.

First, for the previously
described set SUBG(# ¢), let

SUBG=FINI U CAND

(FININ CAND=¢).

Here suppose that we have
already finished extending search
subtrees from every vertex q €
FINIC SUBG to find all the cliques
containing QU {¢ }, and that only
the remaining vertex q& CANDC SUBG
is a candidate for further
extension of the present complete
subgraph Q to find new cliques.
Consider the subgraph G(SUBGgq)
with SUBG4=SUBGN I" (q), and let

SUBGq=FINIqU CANDq

(FINIqN CANDq=¢),

where

FINI4=FININ T (q), and

CAND4=CANDN T" (q) .
Then only the vertices in the
subgraph G(CANDg4) can be
candidates for extending the
complete subgraph QU {q} to find
Thus, further
extension is to be considered only
for vertices in G(CANDg4) excluding
ones in FINIq=SUBGg¢-CANDg.

Secondly, given a certain
vertex u€ SUBG, suppose that all
the cliques containing Q u {u}
have been found. Then every
new clique containing Q, but not
QU {u}, must contain some vertex
q€ SUBG-T" (u). This is because if
Q is extended to a complete
subgraph R=QU V with VC T (u) and
u¢ R, then RuU {u} is a larger
complete subgraph, so R is not
maximal. Thus, any new clique
can be found by extending Q to Q
U {q}, where qg& SUBG-T (u), and
finding all the cliques containing
QU {q}. Therefore, if we extend a
search subtree from u, further

new larger cliques.

extension is to be considered only
for vertices in SUBG-T" (u). Taking
the previous pruning method into
consideration, too, the only search

subtrees to be extended are from
vertices in (SUBG-T' (u))-FINI =
CAND-T" (u) (Du). Here, in order
to minimize | CAND-T (u)| , we
choose such a vertex ue SUBG to
be the one which maximizes | CAND
NC(u)l]. In this way, the
problem of finding all the cliques
of G(CAND) can be decomposed
into k=| CAND-T (u) | such
subproblems, see LEMMA (i) below.

With these two pruning
methods, we have the algorithm
CLIQUES for finding all the
cliques without duplications as
shown below.

procedure CLIQUES(G)
{Graph G=(V,E)}
begin
0: Q=¢

Here, every time Q is found to
be a clique at statement 2, we
only print out a string of
characters "clique," instead of Q
itself in statement 3. This is
because, otherwise, it is
impossible to achieve the worst-
case running time of O3 #/3) for
an n-vertex graph, since printing
out of @ requires time
proportional to the size of Q
which is a global variable.
Instead, in addition to statement
3, not only we print out gq
followed by a comma at statement
7 every time q is picked out as a

{global variable Q is to constitute a complete subgraph}

1 : EXTEND(V,V)

procedure EXTEND(SUBG, CAND)

begin
2 : if SUBG=¢
3: then print ("clique,")
{to represent that Q is a clique}
4 : else u:=vertex in SUBG, which maximizes | CANDN I (u) |
{let EXT4=CAND— I" (u)}
5 : while CAND-T" (u)# ¢
6 : do q:=vertex in (CAND-T (u))
7 print (q, ",")
{to represent the next statement}
7 Q:=QuU {q}
8 : SUBGq:=SUBGN I" (q); CANDq:=CANDN T’ (q)
9 : EXTEND(SUBGq, CANDg)
10 : CAND:=CAND-{q} ({FINI:=FINIu {q}}
11 : print ("back,")
{to represent the next statement)
117 : Q:=Q-{q}
od
fi

end {of EXTEND}
end {of CLIQUES}

new element of a complete printed by statements 3, 7,

string of characters
statement 11 after q is moved

subgraph, but also we print out a 11. This transformation can be
"back," at done in time proportional to the
length of the resultant sequence.

from CAND to FINI at statement Here, primed statements 0,
We can easily obtain a tree and 11" are only for the sake of

representation of all the cliques

from the resultant sequence finally.

4,6,7,8,clique,back,back,
5,clique, back,back,
3,8,clique,back,back, back,
1,2,9,clique,back,back,back,
2,3,9,clique,back,back,back,
9,back,

(a) An input graph G (c) A resultant printed sequence

clique clique clique clique
(4,6,5) (4,3,8Y (1,2,9) (2,3,9)
O : u chosen at &4:

FINI { &
SUBG
. O €CAND — T (u)
clique CAND
(4,6,7,8) ® E€CANDN T (u)

(b) A search forest for G

FIG.1. An example

explanation, and should be deleted

Example. Let us apply the
above algorithm CLIQUES to a
graph in FIG.1(a). Then the whole
process is represented by a seach
forest in FIG.1(b), and we have
the resultant printed sequence in
FIG.1(c). In FIG.1(b), each set of
vertices surrounded by a flat
circle represents SUBG at the

stage, in which vertex with A
mark is in FINIC SUBG at the
beggining Vertex u chosen in

statement 4 is marked by O or NN
depending on whether it is in
CAND or FINI, respectivily. Other
vertices in CAND-T (u) are marked
by ©, while vertices in CANDN I"
(u) are marked by @ . Thus, all
the cliques of G are (4,6,7,8},
{4,5,6}, {4,3,8}, {1,2,9}, and {2,3,9}.

4. The worst—case
time complexity.
We evaluate the worst-case
running time of the previous
algorithm CLIQUES(G) with the
primed statements 0", 7, and 11
having been deleted. So, this is
equivalent to evaluating that of
EXTEND(V, V). Now we begin by
giving a few definitions.
[1] Let T(n,m) be an upper
bound on the worst-case running
time of EXTEND(SUBG, CAND) when
| SUBG| =n and | CAND| =m (nZ m2
0).
[2] Let Tk(n,m) be an upper
bound on the worst-case running
time of EXTEND(SUBG, CAND) when

| SUBG| =n, | CAND| =m, and | EXTu
| =] CAND-T (u) | =k at the first
entrance to statement 5.

[31] Let us consider a

nonrecursive procedure
EXTENDo(SUBG, CAND) which is
obtained from EXTEND(SUBG,

CAND) by deleting a recursive call
9: EXTEND(SUBGq, CANDg). The
running time of EXTEND.(SUBG,
CAND) when | SUBG| =n and | CAND|
=m can be made to be O(n?), then
let this running time be less than
to the following
quadratic equation

P(n)=p1n2+p:mtps,

where p;>0, p22 0, psz 0. 0

From the above definitions,

we have that
Nn,m) = OgMalé m{Tk(n:m)}

=, M2

since To(n,m)< Tk(n,m) for any k,
1£ kL m.

The following lemma is a key
for evaluating T(n,m).

or equal

{(Tx(n,m)}

LEMMA. Consider EXTEND(SUBG,
CAND) when | SUBG| =n, | CAND| =m,
| EXTu| = | CAND-T (u) | =k# 0, and |
CANDN T" (u)| =¢ at the first
entrance to statement 5. In what
follows, CAND stands only for this
initial value, though it is
decreased one by
statement 10 in the while loop.
Let CAND-T (u)={v,, vk}
and the vertex at statement 6 be
chosen in this order. Let

SUBGi=SUBGN I" (vi), and

CAND ; =

(CAND-{v1,vz,,vi-1})N T (vi).
Then

one at

Va2, LLE I

(i) T«(| SUBG| ,| CAND|)<
k
ig {u SUBGi | , | CAND; |)+P(n),
(ii) a) | CAND;| £ ¢, and
b) | SUBG: | £ n-k< n-1.
(See FIG.2) O
THEOREM. The upper bound

T(n,m) on the worst-case running
time of EXTEND(SUBG, CAND) with

n-m m

SUBG

k=m-§ k)

FINI CAND
A - A OV‘ O V2 e

Vi vko ° s Py
/O\ CAND-T (u) [CAND N T (w)

/SUBG i

CAND;
O:Q0 -0 @ @

FINIi
A..-ALO -
Sn-m 29
l
Sn-m+Q=n-k

FIG.2. An illustration for LEMMA

SUBG| =n and | CAND| =m is
expressed as follows for all nz m2
0:

T(n,m)< C3 #/3 - @n)= R(n),

where

& n)=qun? + q:n + qa,
with

Q1=p1/2>0,

q2=(9 1+ p2)/2>0,

q3=27 p1/2+9p2/4+ p3/2>0,
and

C=Max{C1, &, GCs}
with €1=3 q2/1n3 , C:=ps+qs, and
C; being the maximum value of
3(1-2 +3-2/3)-1. @n-3)/3
/3, {Note that @mn-3)/3 #/3 is
finite when n2 1 is finite and it
approaches 0 as n tends to
infinity. Hence, Cs; is a finite
constant.)

Here, R(n)=C3 #/3 - @(n) is
monotone increasing with R(n)2 ps
for all integers nz O.

Proof. Toe begin with we can
ea.sily prove the monotone
increasingness of R(n). Then the

preceding main part can be
proved by induction on n. 0o

In particular, since

T(n,n)$ C3 »/3 — n),
we conclude that the worst-case
running time of the algorithm
CLIQUES(G) is O(3 #/3) for an n-
vertex graph G=(V,E). Note here
that the original Bron and
Kerbosch’s algorithm outputs the
entire clique itself in O(n) time
every time it is found. Thus their
algorithm takes O(n3 #7/3) time as
a whole.

5 . Concluding
remarks .

It should be noted that the time
complexity analysis of the
previous algorithm or its variant
as a function of the number of
cliques of the graph is very hard
and is left open. 4

Now we conclude this report by
giving the following notes.

1) A slight modification of
algorithm CLIQUES gives an
O(2m/298)~time simple algorithm for
finding only one maximum clique
for an n-vertex graph. It is
very much simpler than Tarjan
and Trojanowski’s O(2 2/3)-time
algorithm [TT] or Robson’s o2
0.276n)—~time algorithm[R] for
finding a maximum independent
set, while its time complexity
analysig is very elaborate. The
algorithm has been experimentally
confirmed to run faster than
Tarjan et al.’s for random graphs
with up to 400 vertices.
2) Other modifications with
heuristics give another algorithm
for finding a maximum clique that,
in experiment, runs much faster
than the previous O(2 2/2-98)-time
algorithm. It has been also
experimentally confirmed to run
faster than Balas and Yu'’s
algorithm[BY] for several graphs.
3) By appropriately restricting
the search in the above algorithm,
we can obtain an O(n3)-time
algorithm for finding a near-
maximum clique.

These results will be reported
in detail some other time.

Acknowledgments

The authors would like to
express their sincere gratitude to
Profs. T.Nishizeki, S.Tsukiyama, D.
Hochbaum, E.Lawler, R.Karp, J.Reif,
and R.A.Wagner who joined in the
discussions and gave them useful
comments. They also wish to
thank M.Shindoh and Y.Miura for
their helps.

Referencess
[BK] C.BRON AND J.KERBOSCH,

Algorithm 457: Finding all
cliques of an undirected
graph,Comm.ACM,16(1973) ,pp.575~
5717.

[BY] E.BALAS AND C.S.YU,
Finding a maximum clique in an
arbitrary graph, SIAM J.
Comput., 15(1986), pp.1054-1068

[CN] N.CHIBA AND T.NISHIZEKI,
Arboricity and subgraph listing
algorithms, SIAM J.
Comput.,14(1985),pp.210-223.

[J] H.C.JOHNSTON, Cliques of a
graph— Variations on the Bron-
Kerbosch algorithm,
Internat.J.Comput. and
Information Sci.,
5(1976),pp.209-238.

[LIK] E.L.LAWLER, J.K.LENSTRA AND
A.H.G.RINNOOY KAN, Generating
all maximal independent sets:NP-
hardness and polynomial-time
algorithms, SIAM
J.Comput.,9(1989),pp.558-565.

[MM] J.W.MOON AND L.MOSER, On
cliques in graphs, Israel
J.Math., 3(1965)pp.23-28.

[R] J.M.ROBSON, Algorithms for
maximum independent sets, J. of
Algorithms, 7(1986) pp.425-440.

[RND] E.M.REINGOLD, J.NIEVERGELT,
AND N.DEO, Combinatorial
Algorithms: Theory and Practice,
Prentice-Hall, Englewood
Cliffs,NJ, 1977.

[TIAS] S.TSUKIYAMA, M.IDE,
H.ARIYOSHI, AND I.SHIRAKAWA, A
new algorithm for generating all
the maximal independent sets,
SIAM J. Comput.,6(1977), pp.505-
517.

[TT] R.E.TARJAN AND
A.E.TROJANOWSKI, Finding a
maximum independent set, SIAM J.
Comput.,6(1977), pp.537-546.

