FITYZXL 12-11
(1989. 11. 20)

A Linear Time Algorithm for
the Weighted Rectilinear 2—Center Problem

M. T. Koand Y. T. Ching

Institute of Information Science
Academia Sinica, R. O. C.

Abstract

Given a set of demand points with
positive weights respectively on the plane,
the weighted rectilinear m—center problem
is to find m service points such that the
maximum among the weighted distances of
demand points to their respective nearest
service points is minimized. In this paper,
we present a linear time algorithm to solve
the weighted rectilinear 2—center problem.

1. Introduction

For two points p = (p,, py) and q =
(qx, qy) on the plane, the rectilinear
distance between p and q is lm(p, q) = max

{l px—qx| o Py—qyl }. The rectilinear

distance between a point p and a set of

points S is lm(p, S) = min { lm(p,q)] q€
qe€sS

S}. Formally, given a set P of n demand

points Pys Pgy Py with weights Wi Wo,

oy W respectively, the weighted rectilinear

m—center problem on P is to find a service
point set C of cardinality m, such that the
cost function of C, max w.-£ (p., C) is
1 S iSn 1 o1
minimal among all possible sets C. The
weighted distance of p; to Cis wi-lm(pi, C).

The minimum of the cost function is called
the m—radius of P and the corresponding
service point set C is called an optimal
solution.

The m-center problem is one of the
most important location problems. It is
proved that the m-center problems with

Euclidean distance and rectilinear distance,
where m is arbitrary, are NP-—complete
[Megiddo and Supowit 1984]. For the case
that m is fixed, there are some results. For

m—2 .
general m, an O(n “log n) time
algorithm for the unweighted rectilinear
m—center problem is known [Ko, Lee and
Chang 1987]. The weighted rectilinear
1—-center problem can be solved in linear
time [Megiddo 1983]. The unweighted
rectilinear 2—<enter problem also has a
linear time algorithm [Drezner 1987]. The
weighted rectilinear 2—enter and 3—center
problems already have O(n log n) time
algorithms, where n is the number of input
points [Ko and Lee 1988].

In this paper, we will present a linear
time algorithm for the weighted rectilinear
2—center problem which improves the
previous O(n log n) result.

2. Overview and the Algorithm for the
1-Dimensional Case

The weighted 2—center problem on P is
equivalent to finding a partition of P with
partition sets S1 and S2 such that the

maximum of 1-tadii of S1 and 82 is

minimized. The minimized partition is
called an optimal partition. Let r* be the
2-radius of P, and {c;, ¢,} be an optimal

solution. Then S; = { p € P [£ (p, ¢y) ¢
¢ (p, ¢,)} and S, = P \ S, form an optimal

partition. The above partition is separated
by the path of points (the point for the
1—dimensional case) with equal distance to
¢ and c,. Since there exists an optimal

partition separated by a path on the'plane,
in the following, we consider partitions
separated by paths only. According to the

relative position of ¢y and Cy, WE will use
Su]’ Sur’ Sll’ and Slr to denote the partition
sets. For example, ¢ is on the upper left
side of Cq» then the partition set associate
to ¢y is denoted by Sul and that associate
to Cy is denoted by Slr‘ In the
1—dimensional case, Sleft and Sright are

used. In fact, there can be many optimal
partitions. Let us see the following
example with all points on a line.

A demand point in the 1—dimensional
case is called a weighted number. A
weighted number p with x—coordinate x
and weight w be denoted by (x,w). In the
example, we have 10 weighted numbers: Py

(1)6): Py = (5)3): Ps = (10:2)) Py =
4)2)) p5 = (876)) p6 = (3)1)) p7 = (6)9)) p8
= (2,3), Py = (7,7) and Py = (9,4), as
shown in Figure 1.

—

It is easy to see that S1 = { Ps, Py P
P, plO}’ the set of points with
x—coordinates > 6 and S2 the set of the rest

points form an optimal partition. The
2—radius of this set, 108/13, is contributed
by the 1-radius of Sl' The partition S1 u

{PQ» Py P6} and S, \ { Py, Py p6} is also
an optimal partition, since the addition of
P9, Py Pg tO S1 does not affect the

1-radius of Sl'

Basically, our approach is to find the
separating path (separating point for the
1-dimensional case) of an optimal partition
sets with a binary search. After a search is
executed, a larger subsets of S1 and 82 are

identified. After all, the separating path is
found and the whole optimal partition sets
S1 and S2 are identified. In a search, it

computes 1-radii of the two partition sets
separated by the current searched path to
determine the next direction to search. To
achieve a linear time algorithm, in each

iteration, we prune a portion of demand
points whose weighted distance to the
center is shorter than that of some others
in the identified subsets of S1 and 82,

respectively.

The separating path for which we
search in our algorithm is defined by a
special optimal solution introduced in [Ko
and Lee 1988]. To introduce the special
optimal solution, some notation is needed.
Consider four functions

Heg ()= min o, + 1w},

x_. .. (r)= min {p_ —1/w_},
right pep X p

YowerlD) = r;lé}l; {py +1/wp}, and
Yupper(D) = min {p —r/w }
upper pep Y p

and four points defined by Xleft(r)’
xright(r)’ ylower(r)’ and yupper(r)’

Cul(f) = (Xleft(r)’ yupper(r))’

Cur®) = Cirgny (O Typper():

1) = (5 (0); Fger (1)) and

Clr(r) - (Xright(r)’ ylower(r))'
The four points Cul Cur G and ¢ are

called the upper—left, upper—rtight,
lower—left and lower—rtight center points
respectively. The special solutions
considered are {cul(r),clr(r)} and

We call a

demand point is covered by a service point
¢ within r if wp-lm(p, ¢) < 1. To the

{cur(r),cn(r)} for some 1.

x—direction and y—direction, we «call c
covers p within r horizontally (vertically

resp.) if W Ip, —c l < (wp»]py - cy[<
I 1€5D.).
Lemma 1: [Ko and Lee 1988]

Let r* be the 2—radius of P. A number r >
r* if and only if one of the special solutions

{c (), ¢,(r)} and {c))(r), ¢ (r)} can
cover all points in P within r.

By the Lemma 1, {c ,(r*), ¢ (r*)} or

{e(r*), ¢, (r*)} is an optimal solution.

The above optimal solution is the special
optimal solution used in our algorithm.

For the 2—dimensional case, the prune
process is applied to x—direction and
y—direction respectively as two
1—dimensional cases. Thus, in the
following, we review the prune process in
the Megiddo’s prune—and—search algorithm
[Megiddo 1983] for the I-dimensional
weighted 1—center problem.

Let X, i =1, 2,..n, bethe given n

weighted numbers with weights w,1=1,

2, ..., n, respectively. The prune process is
as follows.
1. Compute X s the median of X, 1=
1,2, ..n

2. Let x* be the optimal center.

Determine whether x* > X x* <

bl -

X_ .
m

3. Without loss of generality, we
assume that x* < X For the case

x* > x__, the process is similar.
m

There are n/2 weighted numbers >
X .denote(.i by xI, .., X]’n/?]'
Consider pairs (Xéi—l’ Xéi)’ =1,
2, ..., [n/4].
4. Compute the solution Xoi_19; of
equation wp. ;- (xg ; — x) =
Wos (xéi - x) fori=1,2 ..,

[n/4].

Compute X, the median of x!’s.
Determine whether x* > x] or x* <
x .

m

7. Without loss of generality, we
assume that x* > X2 For the case
x* < x, the process is similar.

8. For all the pairs with X9i1 2 >
X, prune away the weighted point
with shorter weighted distance to
the x* in each pair.

It is obvious that in a prune process, it

_7777

takes O(n) time and prunes |[n/8] points
away, where n is number of the input
demand points.

In the step 8 of the above prune
process, since the weighted number of
longer weighted distance of each pair is still
remained, the 1-radius of the set of
weighted number after the prune process is
the same as that of the original set.

In the step 2 and step 6 in the above
prune process, the side of x* which x_ and

xﬁx lie in should be determined. 1In the

l—enter problem, it is to compare the
longest weighted distance of x (or x)

resp.) to the weighted numbers on its right
side and that on its left side. In the
2—center problem, we will apply the prune
process to subsets of partition sets Sleft and

Sright
; *
solution { x;.r, (r*),

with respect to the special optimal

Xright(r*) }, where r*

is the 2-radius. For a subset of Sle{L

(Sright resp.), thus, we should determine

* *
whether x> x 0 (r*) ((x < Xright(r)
resp.) or not. Without loss of generality,
we consider the case of a subset of Sleft' It

is symmetric for the case of S The

right’
process is as follows:

1. r:= max {wp-(xm —p,) | p $x .}

2. Consider special solution { x,0(1),
Xright(r)}'
I {x00 (), Xright(r)} covers all

weighted numbers within r

*
then x) p, (r%) < x

*
else x) (%) > x .

In the step 1, it determine the r such
that x = x.¢(r). In the step 2, the

special solution { x) ¢ (1), xright(r) } for all

the weighted numbers is considered. By
Lemma 1, if they cover all weighted
numbers within 1, then the 2—radius of P,
r* ¢ r. In other words, the left center

xleft(r*) of the special optimal solution is

. . *
on the left side of x . Otherwise, Xt (T)
is on the right side of x .

Now, we present the algorithm for the
1—dimensional weighted 2—center problem.

Algorithm
2—Center:
Input: weighted number set P

Output: the 2—radius of P

(* Sy (5 resp.): the set of weighted

numbers already determined to be covered
bz the left (right resp.) center *)
(* R : the weighted numbers still not
determined *
1. R:=P, 1= ¢, and 82 = ¢.
2. case
R = ¢:
then Output 1,
|R] = 1:
then T1 = Sl‘ T2 = 82 UR,

compute 17, I the 1-radius

1-Dimensional Weighted

of T, and T, respectively,
Output min {max {r;, 1y},
max {r}, r3}}
else Go to step 3.
3. Compute X the median of weighted

numbers in R.

4. Rlzz{xiERlxigxm}
R2:={xiER{Xi>xm}.
T1 = S1 u R1 and T, := S2 U R2

5. Compute 1y, the 1-radius of T1 and Iy,
the 1—radius of T,.

6. If r;=r1, then output 1.
If 1, <1, then §,:=T,;, Ri=R \R;.
If r;>r, then §,:=T,, R:=R \ R,
Apply prune process to 51 and 82‘
Go to step 2.
From step 3 to step 6, the algorithm

conduct a binary search to find the
separating point. According to the order of

1-radii of T and T,, we identify larger
subsets S1 and 82 of Sleft and Sright
respectively. In step 7, we apply the prune
process to S1 and 82 individually.

In each iteration, it takes O(|R/|) time
to find the median of R, O(|T,| + [Ty l)

time to compute 1—radii of T1 and Tz, and
O(IS;| + [S,y]) time away (51 +
|S41)/8 points. Since the factor O(| T | +
|T,|) dominates all the others, we

calculate this factor in each iteration for
the total time complexity of this algorithm.

Let f; = IT, I + [Tyl in the k—th

iteration, that is, the number of weighted
numbers remained in the k—th iteration.

It is obvious that f; = n. Since at the k—th
iteration, the belonging partition sets of

1~ n/2k points are already determined,

(f_q— n/2k)/8 are pruned. Thus, we have
the following recursive formula.

k
fi, = k_l—-(fk_l—n/Q)/8
k43
=n/2" "7+ T, /8

s
Let F_= ¥ f,. Since there are log,
S k=1 k
n iterations, the time complexity of our

algorithm is dominated by O(Flogzn)‘
s
F. = % f{
S k=1 k
s S
k+3
= (7/8) k£1 fq+ kiln/Q +

(7/8)-F,_, +n/8

tA AN

s—2 .
<(7f8fTIRy + (B (1/8Y)n/8

<(7/8)1F, +n

By the above inequality, and

(7/8)1%822 L.y = (8/7)-n'%82"2 < gn/7,
we have that Flog,n < O(n). Thus, the

time complexity of our algorithm is O(n).

3. An O(n) Algorithm for the
2—dimensional Case

The basic scheme of our algorithm for
the 2—dimensional case is the same as that
for the 1—dimensional case. But, instead of
a separating point, a separating path of an
optimal partition is to be searched in the
2—dimensional case. Using the special
optimal solution, the separating path is, as
shown in Figure 2, made of two semi-lines
and a line segment. The separating path is
exactly the locus of points of equal
rectilinear distance to the two centers in
the optimal solution. According to the
relative position of the two centers in the
optimal solution, the two semi-lines are
both of slope 1 or —1, and the segment is
parallel to x—axis or y—axis. In fact, we
will search the two semi—lines individually
and find an optimal partition different from
that defined by a special optimal solution
on some demand points which will not
affect the final solution.

By Lemma 1, the optimal solution may
consist of a lower—left center point and an
upper—rtight center point or a lower-right
center point and an upper—left center
point. We may find the optimal solution
among each type of special solutions and
take the minimal of the optimal solutions
of these two types as the optimal solution.
Thus, in the following, without loss of
generality, we present the algorithm to find
the optimal solution among special
solutions consisting of an upper—left center
point and a lower—right center point.

Before presenting our idea, a lemma is

needed. Let Dy4(r) be the set of demand
points covered by cyx(r) within r where 44
is ul, ur, Il or Ir.

Lemma 2: [Ko and Lee 1988]
Dys(r) € Dyx(rr)ifr <o,

By Lemma 2, a demand point is
covered by cux(r) within r, then it is

covered by cy4«(r’) within r’ provided that

r' > 1. Consider Lemma 2 in 1—dimensional
case, it means that a demand point covered
by csx(r) within r vertically (horizontally

resp.) is covered by cys(r’) within

vertically (horizontally resp.).
For a set of demand points on the
plane, S, denote Sx’ called x—version of S,

the set of weighted numbers, {(p,, wp)| p
€ S} and S_, called y—version of S, the set
of weighted numbers {(py, wp)] p € S}.

To solve the weighted rectilinear
2—center problem on P, the first step of our
algorithm is to solve the weighted 2-—center
problem on Px and Py' Let T and ry be

the 2-radii of P and Py respectively and
r__ be the maximum of r_ and r_. With
Xy X y

the value I and the special service point
set ny = {cul(rxy), Clr(rxy)}’ we

partition the demand point set P into four
subsets as follows.

D= {plpe Dul(rxy) and

£ (P () € 40P el)
D} = {plpeE Dlr(rxy) and

(B, eley)) < £, (h cyylry))

Rupper——riﬁht -

Pl w, t(Cyy) Xy’
[P eiliy)| > Txyh
Ry ower—left =
{ p] wp.lm(p,CXy) > Ty

Ipx'_xright(rxy){ > rxy}’

The Figure 3 illustrates the partition
conceptually. The union of R

and Rlower—left
Cul(rxy) and Clr(rxy) within Ty The
points in R

upper—right
is the set not covered by

upper—right (R10wer—1eft resp.)
are covered by clr(rxy) horizontally

(vertically resp.), and covered by Cul(rxy)
vertically (horizontally resp.) within T,

y7
but not covered by ch(rxy) vertically
(horizontally resp.), and not covered by
cul(rxy) horizontally (vertically resp.)
withinr_ .

Xy

Observation 1: The 2-radius of P, ¥ >

T)
Xy
Without loss of generality, assume that
r__=r1_. Sincer_is the 2—radius of P_,
xy X X b'e
r <max min {w_|p_—x . ()],
X peP pitx “left
I (1)
< max min {wp-lm(p, ¢ (),

pepP
w - (B, ()
=¥
Thus, 1*>r_=r1__.
x Xy

By the above observation, if D, U D;
’ ul Ir

= P then the 2—-radius of P is exactly Ty

Thus, in the following, we consider the case
that Dl’11 u Dl’r # P only.

Observation 2: If D)y U Dy # P, then
¢ (%) ¢ ¢, (%), and cul(r*)y > clr(r*)y.
If cul(r*)X > ¢ (r*),, there is an 1 such
that 1 <1 < 1* and cy(r), = ¢p(r)y
Thus, cul(r) (clr(r) resp.) can cover all the

demand points within r horizontally by
itself. Sincer > Tey {c (@), ¢ (r)} covers

all demand points within r. It contradicts

r* is the 2-radius of P.
cul(r*)y > Clr(r*)y is similar.

The proof of

By this observation, the separating
path of the optimal partition is made of
two semi lines of slope 1 and a line segment
parallel to x—axis or y—axis, as shown in
Figure 2a or 2b. Thus, only separating
lines of slope 1 are considered in case of
finding an optimal solution among solutions
consisting of an upper—left center point and
a lower—right center point.

Now, given a line L of slope 1,

Rupper-right is partitioned into two

subsets. One is the set of points above the
line L, denoted as RL and the other
,upper

is that below the line L, denoted as

RL . +.. To such a line L, we consider
,Tight
two sets T1,L = Rlower—left U Dl,ll v
RL,upper’ T2,L = Rlower~left v Dlr U
RL . and the weighted 1-—center
,right
There is

problems on (Tl,L)x and (T2,L)y’
upper—right such that the

maximum of the 1-radii of above two sets
of weighted numbers is minimized. Denote
the minimized maximum as I Similarly,

a line L

for the set Ry . 1.5, thereis a line L of
slope 1 partitions Rlower—left into RL left

and RL,lower
the 1-radii of the

Ruppeg—right U Dir v RL,lower
y—version of Rupper——right uby U RL,Ieft
is minimized. The minimized maximum
for the Ry . 1.5 15 denoted as 1o,

We claim the following lemma for the
2—radius of P.

such that the maximum of

x—version of
and the

Lemma 3:
The maximum of I and I, is the 2—radius

of P.
Proof:

Let r’ denote the maximum of] and

I,, and r* the 2—radius of P. We will first

prove that r’ > r* and then prove that r’ <
£ 3
Ir~.

To prove r’ > r*, we will show that all
demand points are covered by C =

{cy(r"), ¢ ()} within . By Lemma 2,
all points in Dul U Dlr are covered by C’
within ', since r’ > rxy’ Let p be any point
not in Dl’11 u Dir' We consider the case
that p ¢ Rupper—right’
upper side of the

and p is on the

separating line
Since p € R and

Lupper~right upper—right

o> Ty ul(r) covers p within r’
vertically. Since p is on the upper side of
line Lupper—right and ' > 1, ¢ 4(r’) covers

p within r’ horizontally. Thus, wp-fm(p,
C’) < r’. By the same argument, we also
can prove that wp-[m(p, C) < r for the

demand point p in the other cases. Thus,
we conclude that r’ > r*.

To prove that r’ < r¥*, without loss of
generality, we assume 1’ = I Consider

R with
upper—right
separating line L* which is the locus of
— * —
points p satlsfymg 1P, — () | = |py
Clr(r*)y|' We will prove that the 1-—radii

of (Tl,L*)x and (T2,L*)y is less than or

the partition of

equal to r*. Since r; is the minimum

*>

among all partitions of Rupper—right’ r* >

I, =1
1
Let p be any point in T1 L* If p is not
Ruppermght’ it is obvious that
|p —cy(r*), | <r*. Consider that p €
. - *
upper—n ht' Since p is above L*,
[Pty (Py] € [py— e () I Let C* =
{cul(r), ¢ (1)} In case that
Wp‘l (p) *) = Wpl (p) (*)))
o oy (), < w 1 (e y(e) <.

For the case that w_-£ (p, C*) =
w4, (b, (1)),

'ID ()l
< ch(r*) |
< w -¢ 8;), clr r*
<

Thus, we conclude the 1—radius of (Tl L*)

< r*. For any point p in T L*’ we also
conclude w_- |py~ ¢ (r *)y[< r* similarly.
Thus, the 1-radius of (T 9 L) < r*. Since

r’ is the minimum among that of partitions,
we have t* > r'. Q.E.D.

With Lemma 3, the problem now is to
search the optimal separating lines for

Rupper—rjght and Rlower-—left efficiently.

We will show the algorithm for
Rupper~right only. It is similar for
Rlower-left‘

The scheme of the algorithm is
essentially the same as that for the
1—dimensional 2-—center problem. We
conduct a binary search for the position of
separating line of the minimal partition. In
each iteration, we compute m, the median
of (p— py)’s where p € Rupper—right and

is still not determined. Let L be the line
satisfying x — y = m. Next, we compute
the 1-radii of (Tl,L)x and (TQ,L)y to

determine the next direction to search and
make sure the belonging set of one half of
undetermined points. To the points
already known in T L and in
"“upper—right
T2 L , we conduct the prune
"“upper—rtight

process to them according to their
x—version and y—version respectively. It is
obvious that the complexity is linear, the
same as that for the 1—dimensional case.

4. Concluding Remarks
In this paper, we showed an optimal

linear time algorithm for the weighted
rectilinear 2—enter problem on the plane.

The algorithm can be generalized to the
higher dimensional case with linear—time

complexity. There are pd-1 types of
special solutions. As the 2—dimensional
case, we may find the optimal solution
among each type of special solutions and
the minimal one among that of all the
types is the optimal solution. For a pair of
coordinates X and xj, projecting the

demand points to the X5 plane, we have

an, so called, i—j version of the demand
point set. To a type of special solutions,
we consider the corresponding special

Using the

algorithm for the 2—dimensional case, we
may find the optimal corresponding special
solution for each version. The maximum of

solutions on all Cg versions.

the optimal special solutions of these Cg

versions is the optimal solution among the
type of special solutions. Therefore, an

O(?d—l-ng’l) ‘algorithm is obtained for

the d—dimensional weighted rectilinear

2—center problem.

References:

(1] Drezner, 2. (1987) "On the
Rectangular p—Center Problem",
Naval Research Logistics, vol. 34, pp.
229-234. :

[2] Ko, M. T. and Lee, R. C. T. (1988),
"On Weighted Rectilinear 2—Center
and 3—Center Problems," to appear in
Information Sciences.

[3] Ko, M. T., Lee, R. C. T, Chang, J. 5.

(1987), "Rectilinear ~ m—Center
Problem," Proceedings of National
Computer Symposium, Taipei,
R.O.C..

[4] Megiddo, N. (1983) '"Linear—time
Algorithms for Linear Programming

in B3 and Related Problems,” SIAM
Journal on Computing, vol. 12, no. 4,
pp. 759-T776.

[5] Megiddo, N. and Supowit, K. J.
(1984) "On the Complexity of Some
Common Geometric Location

Problems," SIAM Journal on

Computing, vol. 13, no. 1, pp.

182-196.

6> () (31 (42 (53 P (37) &O (9¢) a2

L—_\,——.‘-/ > > re 4 rY
s, <

//4?57;./(1— ,eeft

/:ljuie 3

