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Abstract

The paper discusses

the 2-edge-connectivity augmentation problem for

directed graphs, which is

defined by "Given a directed graph G=(V,E) and a cost function ¢ of ordered pairs of vertices of G into
nonnegative integers each of which is the cost of an edge from the first vertex of the pair to the sccond
one, find a set of directed edges, E', of minimum total cost such that the graph G+E'=(V,EUE') is a 2-edge-

connected directed graph”, where edges of E' connect

distinct vertices of V. We show that the unwcighted

version of the problem, that is, c(u,v)=c(u',v') for any two ordered pairs (u,v), (u',v') of vertices of G and

we ask for a solution E' of minimum cardinality, can be solved in 0(IVI2(IEI+IVI)3/2) time.

1. Introduction

The subject of the paper is the 2-edge-connectivity
augmentation problem for directed graphs: "Given a
directed graph G=(V,E) and a cost function ¢ of ordered
pairs of wvertices of G into nonnegative integers cach
of which is the cost of an cdge from the first vertex of
the pair to the sccond one, find a set of directed edges,
E', of minimum total cost such that the graph
G+E'=(V,EUE") is a 2-edge-connected directed graph",
where cdges of E' connect distinet vertices of V. A
directed graph G=(V,E) is 2-cdge-connected if and only
if G has at least two directed disjoint paths from u to v
for any pair of vertices u,v of V. The paper considers
the of the that

version is,

unweighted problem,
ciuov)=clu’,v'y for any two ordered pairs (u,v), (u'v)
of vertices of G and we ask for a solution E' of
minimum cardinality. We show that the problem can
be solved in polynomial time.

The k-edge ( k-vertex, respectively )-connectivity

augmentation problem, k-ECA ( k-VCA ) for short, is

similarly defined for both directed and undirected
graphs.We restrict ourselves to k-ECA and k-VCA for
directed graphs. (For those of undirected graphs, scc

[7-12].) An O(VI+IE) algorithm for 2-ECA with unity
cdec-costs and the NP-completeness of 2-ECA with G’
have been by Eswaran and
NP-completeness of 2-ECA with G’
trece has been shown by Frederickson

having no edge given
Tarjan {1]. The
restricted to a
and Ja'ja [3], which also provides an O(IVIZ)
approximation algorithm with worst approximation no
more than twice the optimal. A characterization of k-
ECA with G' being a directed tree is given by Kajitani
and Ueno [5]. An O(IVl) algorithm for k-VCA with G'

restricted to  a rooted directed tree is given by
Masuzawa, Hagthara and Tokura [6].

Time complexity of the unweighted k-ECA of
direccted graphs is an open problem, and our
discussion is the first step showing that it is

polynomial-time solvable if k=2. It is shown how to
compute the cardinality of an optimal solution {E'l
from a given directed graph G and that there is an
O UVI2Z(EI+IV1)3/2) algorithm for solving the 2-ECA for
directed graphs.

2. Preliminaries
Although some dcfinitions given
describe  some  other definitions used in  the
following discussion. A digraph G=(V(G),E(G))
consists of a finite set V(G) of vertices and a finite sct
E(G) of dirccted edges; a dirccted edge from u to v is
denoted by (u,v). u and v are called the starting vcriex
and the ending one, respectively. For simplicity a
graph and edge means a directed graph and a
dirccted edge, respectively, unless otherwise stated.
V(G) and E(G) denoted by V. oand E,
respectively, il no confusion. the
cdge is called a self-loop. Two edges ¢ and ey

are in Scctionl,

we

an
are  often
there is If u=v then

having
the same ordercd pair arc called multiple  edges. For
disjoint  subscts S, S'c V(G), SAS'=2, let
EG(S,8)={(u,v)lue S, ve §'}, where the subscript G is
omitted.  Eg (8.8 is called an (§,8")-cur. If
S'=V(G)-S then it is called an S-cut or simply a cut.
We denote OEG(S):EG(S,V—S) or OEg(u)=Eg({u}.V-{u}).
Similarly IEG(S) and IE¢ (u) arc defined by replacing S
and V-S with V-S and S, respectively odg(S)-—-!OEG(S)I (
idG (S)=HEg5(S)t, respectively ) s calted the outdegree (
indegree ) of S in G. If S={u} then it is denoted by
od@G(u). Let ONG(u) ( ING(u), respectively ) denote the

often

sct of all ending ( starting ) vertices of those in OEG(S)
(in IEG(S) ). If S={u] then OE(S) is denoted by OEq(u).
A directed path P(uyv) from u to v is an alternating
scquence of vertices and u=v(Q,c1,V1,....¥n -
1.¢n.vp=v such that vg,...,vp arc all distinct and each
ci=(vi-1,vi), I<isn. The length of the path is n. A
semipath from v] similarly defined except
that

cdges

o vy is
cach ej is (vi,vi+1) or (vi+1.,vi) for 1<i<n. In
particular, these paths are also called a (u,v)-path and
a (u,v)-semipath, respectively. A cycle a directed
path together with an edge (vp,vn). The length of the
cycle is n+l. A cycle which contains a specified vertex
v is also denoted by Xy. A graph G is called simple if G
contains ncither sclf-loops nor multiple edges. A
graph G is complete if it is simple and E(G) contains
all possible edges except loops. A subgraph G of a
graph G is a graph with V(G)SV(G) and E(G)SE(G),
where & denotes inclusion; < does proper inclusion. G



is a spanning subgraph of G if V(G)=V(G). A graph is
acyclic if it contains no cycle. G is weakly connected
if there is a (u,v)-semipath for any two vertices u and
v. In G, a vertex v is reachable from u if there is a
(u,v)-path. A vertex re V(G) is called a root of G if and
only if every vertex ve V(G) is reachable from r. G is
strongly connected if any veriex is a root. An
arborescence is a directed acyclic graph with only
one root having no entering edge and all other
vertices having exactly onc eniering cdge. A leaf in
an arborescence is a vertex without outgoing cdges.
An arborescence is often called a rooted tree.
Deletion of a sct S of vertices from G is to construct
G=(V-S,E-(IEG(S)UOEG(S)) which is denoted by G-S. If
S={v) then we often denote as G-v. Deletion of a sct Q of
edges from G is also denoted by G-Q, and if Q=(e} then it
is denoted by G-e. If E' is a set of edges such that ENnE=0
then G+E' denotes the graph (V,EUE). If E'={c} then we
denote as G+c. Shrinking of a vertex sct SEV into a
vertex vg is to construct the graph, denoted as G1{S,vs].
with the vertex set (V-S)u{vs} and the edge sct E(G-S)u
((vs,v)I(u,v)e E,ue S,ve V-S}. Two paths PP’ arc said 1o
be edge-disjoint (vertex-disjoint, rtespectively) if
and only if they have no edge in common ( they have
no verlex  except endvertices in common ). For two
vertices u,v of G, let Mg (uw) ( LgQuv), respectively )
denote the maximum number of edge-disjoint  (
vertex-disjoint ) (u,v)-paths of G. The edge-
connectivity cc(G) (the vertex-connectivity vc(G))
of G is the minimum Mg (uv) ( Lg(uv) ) over all
ordered pairs uv in G. A graph G is k-edge-connected
(k-vertex-connected, respectively ) if and only if
cc(G)zk ( ve(G)zk ). A k-edge-component (k-vertex-
component, respectively ) of G is a maximal subset of
vertices such that, for any ordered pair uv in the sct,
G has at least k edge-disjoint ( vertex-disjoint ) paths
from u to v. A k-component means 2 k-edge-
component unless otherwise stated, and a component
often means a l-component. Let C(G) or simply Cy

denote the sct of all k-components of G. Distinct k-
components arc  disjoint and, therefore, cach k-
component S s partitioned into at least two (k+1)-
components if S is not a (k+1)-component. A subsct
K cE(G) is called a (u,v)-scparator if and only if every
(u,v)-path of G has an cdge of K, and a (u,v)-scparator
of minimum cardinality is called a (u,v)-cut. For any
pair u, ve V(G) it is known that (Menger] Mg (u,v)=k if
and only if G has a (uv)-cut of cardinality k and that
the cardinality of this (uv)-cut is equal to that of
EG(S.V-S) for some S with ue S and ve V-S.
A partial order £ is a binary relation on a sct S defined
by (1)~(3):

(1) x £ x for Vxe S. ( Reflective )

) If x £ yandy £ x then x=y. ( Antisymmetric )

(3)Ifx £ yandy £ zthenx £ Z. ( Transitive )
A pair [S.£] is called a partially ordered set (ora
poset for short ). A poset (S, is called a totally
ordered set if and only if (4) holds:

(4) Either x £ yory £ x holds for Vx, yeS.

For two elements x, y of a poset {S,£], x covers'y if
and only if y £ x and there is no z such that y £ 2z £ X. X

is called minimal ( maximal, respectively ) if and only
if there is no ye S such thaty £ x (x £y ). For a subset
$'cS, xe S is called a lower bound ( an upper bound,
respectively ) of §'if x £y (y £ x ) for Yye S'. xe S is
called a greatest lower bound (aleast upper bound,
respectively ) if (1) x is a lower bound ( an upper
bound ) of S, and (2) x' £ x (x £ x' ) for any other
lower bound ( upper bound ) x' of S' We denote x=glbS'
( x=lubS" ).

3. Minimum 2-edge-connectivity
augmentation

In this section we characterize the minimum
number of directed edges whose addition to a given
directed graph result in a 2-edge-connected graph. It
is shown that thc minimum number can be computed
from a given graph, and we proposc an algorithm for
finding a minimum solution to the problem.

3.1. Augmentation numbers

First of all wc nced some definitions. A subsct
Sc V(G) is called a weak k-component of Gif Sis a
maximal subset of a (k-1)-component such that, for

any ue S, therc is ve S satisfying cither M(u,v)2k or
M(v,u)zk. V(G) is partitioned into some weak k-
componcnts. Each  weak  k-compunent is partitioned
into some k-components. We define a partial order £y
on the sct included in cach wecak k-
component W of G as follows: for Sy, Spe Cy(G) with Sy,
SocW, 51 £k Sy if and only if M(u,v)zk and M(v,u)=k-1

for any ue S and ve Sy. A maximal subsct HEW such

of k-components

that £y is a total ordering in the sct is called a k-
chain. The minimal ( maximal, respectively ) clement
of a k-chain H is called the k-source (k-sink ) of H.
Clearly a weak k-component W is a union of some k-
chains. Any k-component S'&W which is the k-source
of some k-chain is called a k-source of W. A k-chain H
is called a source ( sink, respectively ) k-chain if
E(V-W,H)=¢ ( EH\V-W)=¢ ) and there is no other k-
chain whose k-sink ( k-source ) is also S', wherc W is
the wecak k-component containing H, and S' is the k-
sink ( the k-source ) of H. Let Sp and ’I‘O be the k-
source ( k-sink, respectively ) of a source ( a sink ) k-
chain Hg. Then the source ( sink ) palm Q of Sy ( Ty
) is the maximal union of those source ( sink ) k-
chains Hg. ... Hp,, m21, sharing Sg as the k-source ( Ty
as the k-sink ). Note that if
salisfying TiékS’ ( S'ékS-l ) then S'e Q, where §; (T;) is
the k-source ( k-sink ) of ”i' 1<i<m. Each k-chain
which is not a member of any source or sink palm is
called a finger. A palm means a source palm, a sink
palm or a finger. We provide some examples in the
following.

there is any S'e Z

Example 1. Consider the graph Gp ( excluding
bold lines ) of Figurc 1. Then
Z1=(8=(1.23.456.79]. (8). {10}, (11}, (12}, {13}}
=73=Z4 (we sct P=H and W=P),

Zg={X=Su(8,10}, (11), {12}, (13}}.

Now we define the augmentation number D(G) of

_,54_.



any given directed graph G. The sets of all 2-
components, 2-chains, palms, weak 2-components, I-
components and weak 1l-components of G are denoted
by Zi. Z3. Z3. Z4, Zs and Zg, respectively, in the
following discussion. Let sZj3, (Z3 and fZ3 be the sets of
source palms, sink palms and fingers, respectively.

For cach SeZ; ( 1<i<6 ), we call

iEDG(S)=max(0, 2-idG(S))

the in-edge demand of S. We define recursively the
in-demand iDG(S) of SeZ;j ( 1<i<6 ) by first selting

(1) iD(S)=IED(S) for cach SeZj.
For simplicity the subscript G is often omitted. Before
defining iD(S) for We Z4, we may nced the following
supplementary change of iD(S'), S'e€Z;. For each HeZj,
let

iLD(H)=Zg'cH, S'eZ; iD(S").
Set

(2)

1 if there is He Z; such that iLD(H)<iED(H)
and S’ is the 2-source of H.

iD(S')  otherwise.

We denote

iILD'(H)=Zg'y, SeZ] iD'(S").
and

iLD'(P)=E§'cP, S'e Z, iD'(S") for each PeZ3.
Set

iD'(S')=\

(3)
1 if there is Pe Z3 such that iLD'(P)<iED(P)
and S' is the 2-source of P,
iD"(8)=
iD'(S")  otherwise.
Set

iD(S)=iD"(S") for cach SeZy,
and we denote

iLD(S)=Zg'cS, S'e z; iD(S") for cach SeZ,, 4<m<6,
where j=1 if m=4, j=4 if m=5 j=5 if m=6. iD'(§') or iD"(S)
( iLD'(8). respectively ) is also called the in-edge
demand of S' (in-local demand of S ). Then we define

iD(S)=max (iLD(S), iED(S)} for each SeZ,, 4sms<6.
We similarly compute the out-local demand oLD(V(G))
by setting oD(S)=0ED(S) for each SeZ; and replacing
iLD, iD', iLD' or iD" with oLD, oD', oLD' or oD",
respectively.

Note that the sets Zj. 1<j<6, constructed from G arc
identical to those defined from the reversed graph G,
where V(G):V(G), and (u,v)e E(a) if and only if
(v,u)e E(G). Hence oDG(S)=iDG(S) for Se Z1, and
similarly for oLDg, oD'Gg, oLD'G, or oD"G. Finally the
augmentation number D(G) of G is defined by

0 if ec(G)22

D(G)=

max {iLD(V(G)), oLD(V(G))},

where iLD(V(G))=Z iD(S), and similarly for
SeZg

oLD(V(G)). We assume that iLD(V(G))<oLD(V(G))
throughout the paper. ( If iLD(V(G))<oLD(V(G)) then
we consider G ( instead of G ) for which

iLD(V(G))ZoLD(V(G)), and the following discussion
assures that the solution A for G will be obtained from

a solution A for G by reversing the direction of cach
edge of A

Example 2. We provide an cxample of computing
iLD(V(G)) and D(G). Consider the graph Gp ( excluding
bold ) of Figure 1. Z;, 1<i<5,
determined in Example 1. The computation of D(V(G))
is summarized in Table 1, where the computation is
terminated at Zs, since Zs=Zg. We obtain iILD(V(G))=5,
oLD{V(G1))=7 and D(G)=max(5,7)=7. A solution for Gy is
Aq1=((11,13), (12,1), (11,12), (13,11), (8.,13), (10.1).
(12,1)} ( denoted by bold lines ), in which cdges are
detcrmined one by onc in this order ( (11,13) is the
first ) by the algorithm to be proposed in Section 3.3.

lines have becen

Proposition 1.
source S and the sink T (#95).
through (5) hold.

(1y 1E(H-S,S)I=IE(T,H-T)i=1.

1 if E(V-H,8)=¢,

Let H be any 2-chain with the 2-
Then the following (1)

(2) iD(S)=
- 0 otherewise,
and
]1 if E(T,V-H)=¢,
oD(S)=

0 otherewise.

(3)iD(S")=iD'(§)=iD"(S")=oD(S")=0D'(§)=0D"(5")=0
any 2-component S'CH-(SUT).

(4) iED(H)=0 if there is another 2-chain H' sharing
T as the sink.

(5) H is a source 2-chain if iED(H)=1.

(6) If P is a palm with iED(P)=1 then P is a source
palm.

for

Proposition 2. Suppose that iLD(V(G))2o0LD(V(G))
and that V(G) is a weak 2-component containing at
least two 2-components. Then V(G) contains a 2-
component S satisfying iD(S)=1, iD'(S)=1 or iD"(S)=1.

Proof. Suppose that any 2-component ScV (=V(G))
has iD(S)=iD'(S5)=iD"(S)=0. Then

iLD(V(G)):ESEZIiD"(S):O‘

If V is a 2-chain then the 2-source ScV  has
iED(S)=iD(S)=1. Hence V contains distinct 2-chains
cach of which has the 2-source and the 2-sink that is
distinct from its 2-source. If there is a 2-source ScW
which is contained in only one 2-chain then idG(S)=1
or iED(S)=iD(S)=1. Hence any 2-source ScW is shared
by at lcast two 2-chains contained in W. It follows that
W contains a source 2-chain and, therefore, a source
palm is included in W. If some 2-chain H has iED(H)>0
then iLD(H)=0<iED(H) and, thcrefore, the 2-source ScH
gets iD'(S)=1. This implies that cevery 2-chain HcW has
iED(H)=0. Similarly cvery palm PcW has iED(P)=0. Lect
P=Hju---UHcW, m21, be a source palm of a 2-source S,
where cach  Hj is a source 2-chain of S. Since
iED(H;)=0, 1<i<m, and iED(P)=0, we have m23 and there
arc at least two non-source 2-chains sharing S as the
2-source. Each H; contains the 2-sink T; with oD(Tj)=1,
we obtain oLD(V(G))>ILD(V(G))=0, a contradiction.
QED.



The augmentation number D(G) has the following
important property.

Proposition 3. For any given directed graph G,
ec(G)22 if and only if D(G)=0.

Proof. The definition of D(G) clearly means that
D(G)=0 if ec(G)>2. Now suppose that ec(G)<2. If 1Z5I>1
then each SeZg has iED(S)22, or D(G)>0. Assume that
ec(G)21 and 1Z(122. If 1Z4!>1 then each Se Z4 has
iED(S)21, or D(G)>0. Thus we assumc that V(G)e Zg4.
Then, by Proposition 2, therc is a 2-component S with
iD(S)=1, iD'(S)=1 or iD"(S)=1, showing that D(G)>0.

QE.D.

3.3. Proof of the lower bound
Let o(G) be minimum cardinarity of solutions for
the unweighted version of 2-ECA. We are going (o

prove that o(G)=D(G) for any given directed graph G.
Proposition 3 shows that D(G)=0=a(G) if ec(G)=2. Hence
we consider only the case with ec(G)<2, or D(G)>0. First

we show that a(G)2D(G) in this section, and the
converse, a(G)<D(G), will be shown in the following
section.

First, we invesiigate some graph structurcs rclated
to in-demands of 2-componcnts, 2-chains and palms.
Given a directed graph G, V(G) is the disjoint union of
one or more l-components, each l-component is the
disjoint union of one or more weak 2-components,
each weak 2-component is the union of onc or more
palms, each palms the union of one or more 2-
chains, and each 2-chain is the disjoint union of onc
or more 2-components including a 2-source and a 2-
sink, where they may be identical. The next
proposition follows from the definition of 2-sources
and 2-sinks.

is

Proposition 4. Suppose that § and S' are distinct
2-components contained in a wcak 2-component of G.
Then 0<iD(S)<1 and 0<oD(S)<1, and if iD(S)=1 ( oD(S)=1,
respectively ) then S is a 2-source ( a 2-sink ).

We consider a 2-chain HeZp with iLD(H)<iED(H) and
a palm PeZ3 with iLD'(P)<iED(P) in the following two
propositions. We can easily prove the next proposition
by case analysis and, therefore, the proof is omitted.

Proposition 5. Let H be and 2-chain, S be the 2-
source of H, W be the weak 2-component containing H,
X be the 1-componcnt containing W and Y be the wecak
1-component containing X. Suppose that iLD(H)<iED(H)
and put iLD(H)=p and iED(H)=q. Then the following (1)
and (2) hold.

(1) H does not satisfy (p=0 and g=2).

(2) We have p=1-m and g=2-m if and only if the
following (a) and (b) hold, where 0<m<l1.

(a) idg(H)=m.
(b) IE(W-H,S)=1 if m=1, and H=W=X if m=0.

Remark 1. Similar results hold for the 2-sink § of
a 2-chain H with oLD(H)=p and oED(H)=gq.

Proposition 6. Let P be any palm, S be the 2-
source of P, W be the weak 2-component containing P,
X be the l-component containing W, and Y be the
weak l-component containing X. Suppose that
iLD'(P)<iED(P). Put iLD'(P)=p, iED(P)=q, idG(S)=r, and y
be the told number of source 2-chains having S
common. Then the following (1) through (3) hold.

(1) P is a source palm.

(2) P=W=X if q=2, and iEG(W-P,P)i=1 if g=1.

(i) r22 and y23

in

if p=0 and q=2,

(3) { (ii) either (r=1 and y21) or (r=y=2) if p=1 and q=2,

(iii) r23, y22 and IE(W-P,S)I=1 if p=0 and q=1.

Proof. Since iED(P)>0, P is a source paim and (1)
holds. If =2 then, clearly, P=W=X. If q=1 then cither
P=WcX or PcWcX. If P=W then E(V(G)-W,P)=0¢,
iD(S)=1=iD'(S) and iLD'(P)=1, contradicting that
iLD'(P)=P=0. Hence IEG(W-P,P)l=1 and (2) holds. Let H
be any 2-chain having S as the 2-source. First assume
that p=1 and q=2. Then P=W=X. If idG(S)=1 then iD(S)=1
and y21. If idg(S)=2 then iD(S8)=0 and y=22. If y=2 then
we get iD'(S)=1 since iLD(H)=0<iED(H)=1, showing that
p=1 and q=2. If y>2 then iD'(§5)=iD(8)=0 since
iLD(H)=0=iED(H). Hence p=0, a contradiction. If id;G(S)>2
then y>3 and, similarly, we have p=0, a contradiction.
Thus (3)(ii) holds.

Next assume that p=0 and q=2. The discussion
similar to (3)(i) shows that if p=0 then idG(S)22 and
y23. Thus (3)(1) holds.

Finally assume that p=0 and g=1. Then PcW and
iLD(H)=iED(H)=0, where H is any 2-chain having S as
the 2-source. Hence idg(S)22 and y22. IE(W-P.S)i=1
E(V(G)-W,P)=¢ with g=1. If idg(S)=2 then IE(W-
iIED(H)=1, a
Q.E.D.

since
H,S)l=1 and y=2. That is, idg(H)=1 and
contradiction. Thus idg(8)23 and (3)(iii) holds.

Remark 2. Note that If P=W=X is a sourcc palm
then idG (X)=0. Results similar to Proposition 6 hold on
the 2-sink S with odg (S)=r
oL.D'(P)=p, oED(P)=q.

and a palm P with

Now we prove that a(G)2D(G).

Lemma 1. a(G)2D(G).

Proof. Let A be any edge set with |Al=a(G) such
that G'=G+A 2-ecdge-connected. By assuming that
IAI<D(G) we show a contradiction that cc(G')<2. Since
D(G)>0, we have ec(G)<2 by Proposition 3. For
simplicity put K(S8)=Eg'(V(G),S)nA for any subset
Sc V(G). Since IAI<EY-€Z6 iD(Y"), there is a wecak 1-
component Ye Zg with IK(Y)I<iD(Y). If iLD(Y)SiED(Y)
then idg(Y)s1 and cc(G')<2. Hence ILD(Y)>IED(Y), or
iD(Y)=iLD(Y). Since IK(Y)iiD(Y)=Zy Zs iD(X"), there is
a l-component XeZs with IK(X)I<iD(X). If iLD(X)SiED(X)
then idg(X)s1 and ec(G')<2. Therefore ILD(X)>IED(X).
Since IK(X)I<iD(X)=iLD(X)=Zy ¢ Z4W'eX iD(W"), there is a
weak 2-component Wg X with IK(W)IkiD(W). If
iLD(W)<iED(W) then IK(W)IiED(W), idg(W)<1 and
ec(G')<2. iLD(W)>IiED(W). Then

is

Hence



‘K(W)KiD(W):iLD(w):ZS'EZl,S'QW iD"(S"). If We Z) then
IK(W)I<iLD(W)=iD"(S")=iD(8)=iED(S), idg(W)<2 and
cc(G')<2. Now suppose that W contains at least two 2-
components. Then 0<iD"(S')<1 for any 2-component
S'eW. For each 2-component ScW with iD"(S)=1, S is a
2-source of W and there arc three cases (1)
iD($)=iD'(8)=iD"(S), (2) iD(S)=0 and iD'(S)=iD"(S)=1, (3)
iD(S)=iD'(S)=0 and iD"(S)=1,

Since each 2-component ScW with iD"(S)=1
satisfies only one of the three cases, we can partition
Cw =(SeZ)IScW) into thrce sets Cy, C3 and C3, where
cach 2-componcnt in Cj satisfics the case (i), [<i<3.
Clearly iLD(W)=ICj1+iCpI1+IC3l. For each Se Cy, we have
IK(S)I21 ec(G')22. For each Se C) ( Se C3,
respectively ), there is exactly one source 2-chain Hg (

since

exactly one source palm Pg ) having S as the 2-source
and such that iLD(Hg)<iED(Hg) ( iLD'(Pg)<iED(Pg) ) and
such that S#§' with S, S'e Zy implies Hg#Hg' ( Pg#Pg' ).
Then ILD(H)=0 since iD(S)=0. Proposition 5 shows that
idg(H)=1 and IE(W-H,S)I=1. Since cc(G')22, we have
IK(H)iz1. Now consider P, for which iLD'(P)=0 sincc
iD'(S)=0. If iED(P)=1 then W-P%¢ and I[EG(W-P,P)l=1 by
Proposition 6(2). Then IK(P)I21 since cc(G')22. Now
assume that iED(P)=2. Then P=W=XcY and if XcY then
1dG(X)=0 by Proposition 6(2). Proposition 6(3)(i) shows
that Y=idg(S)22 and y ( the total number of source 2-
chains in P )23, If P=V(G) then iD"(S)=1 and
iLD(V(G))=1. We have oLD(V(G))=oLD(P)23 sincc cach
source 2-chain in P has the 2-sink T with oD(T)=1.
Hence iLD(V(G))=1<oLD(V(G)) contradicting our
assumption that iLD(V(G))zoLD(V(G)). If P=YcV(G)
then IK(P)i22 since ec(G)22. If P=W=XcY then idG(X)=0
and, thercfore, IK(P)I22.

The discussion so far shows that there is one-to-
one correspondence of 2-components ScW with iD"(S)

into cdges of K(W), mcaning that iD(W)<IK(W)l, a
contradiction. QE.D.
3.3. Admissible pairs and an algorithmic proof

of the upper bound
We prove that o(G)<D(G) in this section. The proof
is by induction on augmentation numbers of directed
graphs. It is shown that if D(G)>0 then G has a pair u,
ve V(G) such that G'=G+(u,v) has D(G")=D(G)-1. Hence,
by induction, we have a(G)-1=a(G')<D(G') and
o(G)sD(G). First we define an admissible pair u, v of G.
For notational simplicity we denote By=Zg ( weak I-
components ), Bo=Zs ( l-components ), B3=Z4 ( weak 2-
components ), B4=Zy ( 2-components ), and let
1 if IB)22,
2 ifIBy=1 and IB4>2,
3 if IB4=1and IB422,
4 if IBy=1,
where IB4l22 since we are assuming that ec(G)<2. Note
that if 2<m<4 then V(G)e Bp,.1. A pair of vertices up, up
of G with D(G)>0 is called an admissible pair if and

only if they satisfy the following (1) through (4).
(1) There are two sequences S4j.«~.Smj, 1<i<2, such

that uje S4jc---oSmj, where Sjje Bj and Sj1#Si, m<is4.

(2) 1f Sp1#S79 then Sy ( Spp. respectively ) is a 1-
sink ( I-source ) and oD(S71) ( iD(S77) ) is maximum
among those I-sinks ( l-sources ) in Syq (Syp ).

(3) If S31#S37 and S3J‘C32j (j=1or2) then S37 ( S37,
iIED(S31)2z1 ( 0ED(S37)21 ), and
oD(S31) ( iD(839) ) is maximum among such weak 2-
components in Spj, 15js2. If IB3124 then idG(S31v832)22
(0dG(S31uS32)22 ).

(4) 1 S41#S47 and S4jcS35 (j=1 or 2 ) then S41 ( S42.
respectively ) is a 2-sink ( 2-source ) of 831 ( S37)

respectively ) has

such that oD(S41) ( iD(S49) ) is maximum among thosc
2-sinks ( 2-sources ) in S31 ( 837 ).

We show an example of an admissible pair uy, up
by using the graph G of Figure 1. The computation of
D(Gy") for G1'=G1+(uy,up) is also given.

Example 3. The graph Gy ( excluding bold lines )
of Figurc 1 has an admissible pair uy=11 and up=13. The
wo scquences are uje S4j=53j=59;=S1;, 1<js2, where
S41={11} with oD(S41)=2 and Sgp={13} with iD(S47)=2.
For G1'=G1+(11,13), let Z;' denote the sct corresponding
o Zj of Gy, 1<isS.

Z1'=(5'=(1.2,3,4,5,6,7,9), (8}, {10}, {11}, {12}, {13})},

Zy'={H1=Su {8}, Hp=Su (10}, (11}, {12}, (13}}

Z3'=Zy' ( we set Pj=Hj, 1<i<2 ).

Z4'={W=SU{8,10}, {11}, {12}, {13}}

Z5'={X=Wu(10,11,13}, {12}}

Table 2 summarizes the computation of iLD(V(G|'))=4,
oLD(V(G1')=6 and D(G]')=6. Repeating this proccdure
determines a solution Ay with IA11=D(G1) as shown by
bold lines in Figure 1.

Now we proceed to formal discussion to prove that
a(G)<D(G). We can casily prove the following
proposition, and the proof is omitted.

Proposition 7.
pair.

If D(G)>0 then G has an admissible

Let uy, up be any fixed admissible pair of G with
D(G)>0, and we denote G'=G+e, where e=(uy,up). Let Z7',
Z7', 23", Z4', Zs' and Zg' denote the sets of 2-components,
2-chains, palms, wcak 2-components,
and weak Il-components of G', respectively. Each Se ZJ

l-components

'

with Se Zj is called a Zj-augmenting
15j<6.

ser for ecach j,

Proposition 8. Lct F be any Zj—uugmcnling sct

for some j, 1<j<6. Then the following (1) through (5)
hold. :
(DIf j=6 then (i) and (ii) hold.
(i) F=S11US 13, and FeZg for VF'e Zg'-{F}.
(ii) F"e Zj for VF"e Z;' and cach j, 1<j<5.
(2) If j<5 then 1Zgl=1.

(3) If j=5 then F is a l-chain containing Sp| and



Spp as the l-sink and 1-source, respectively.

(4) If j=4 then F is a union of at least two weak 2-
components.

(5) If j=1 then F is a subchain of a 2-chain.
( The proof is omitted. )

Proposition 8 allows us to extend the definitions of
iEDG, iLDG. oEDG and oLDG onto F which is a subset
when we consider it on G. For cxample,
iLDG(F)=EgcF,s'e Z,1DG(). ILD'GE=EgcF,se 21 1D'G(S)
and iLD"G(F)':zS';F,S'eZ]iD"G(S') for FeZ'.

First we prove the inductive basis of our proof.

Proposition 9. If D(G)=1 then a(G)=1.

Proof. If IZleZ for some j, 45j$6, then we can
easily show that D(G)22. Hence V(G)eZ4. Suppose that
W=V(G) contains at least two 2-chains. If W has no
source 2-chain then W has at least two 2-sources S
with iD(S)=1. If W has a source 2-chain then w
contains a source palm P. If some source palm P
contains at least two source 2-chains then cach 2-
chain has the 2-sinks T with oD(T)=1. If any source
palm P is identical to a source 2-chain then the 2-
source S of P has iD'(S)=1. Hence there is either two 2-
sinks T with iD(T)=1 or two 2-sources S with iD'(S)=1.
Hence W is a 2-chain having S and T as the 2-source
and the 2-sink, respectively. Since ujeT and uge S, we
have ec(G')=2, showing that a(G)=1=D(G). Q.E.D.

Now assume that D(G)22, and we will prove that

D(G)-D(G")=1.

Proposition 10. If 1Zgl22 then D(G)-D(G')=1.
Proof. If Zgl22 then F=S1juSqyp is the only Zg-
augmenting set, iLD(V(G))22 and oLD(V(G))22. For any
F'eZg'-{F} or Fe Zj'( 1<j<5 ), we have Fe Zg or Fe Zj.
respectively, and it can be proved that
iDg(F)-1 ifue F',
iDG(F)= .
iDg(F") otherwise.
Heunce
iLD(G)-iLD(G")
=iDG(S 1)+iDG(812)—iDG'(F)
=iDG(S1)+DG(S12)-LDG(F)
=iDG(Sl1)+iDG(312)-(iDG-(S]1)+iDG'(812))=1.
Similarly oLD(G)-oLD(G')=1, and D(G)-D(G')=1 if 1Zgl<2.
QE.D.

that unless

In the following we assume 1Zg1=1

otherwise stated.

Let Hy, Ry, Hp, Rp.+Hp.1, Rp.1. Hyp (m21) be a
sequence of 2-chains in a weak 2-component w
satisfying the following (1) through (3) ( Figure 2).

(1) Each Hj (Rj, respectively ) has the 2-source Sj (

Si+1 ) and the 2-sink Tj, where 1<ism for H; and
1<i<m-1 for Rj.

(2) There are (ui’,up)-path Py and (uz,u2")-path P2

in G, may be
indentical to uj and if “j‘“j' then (V(P)-)~

where uy'e Ty, up'e Sq. yj'

J =

[uj'])r\W=¢ for each j, 1<j<2.

(3) There may be other 2-chains having S as the
2-source or having Tj as the 2-sink, and there
may exists a longer sequence having the above
sequence as a subsequence.

We call this sequence a candidate chain ( with
respect to uj and up ). Any Zj-augmenting sct is a
subchain of some Hj, and Hj contains at most one Zj-
augmenting set. Let Q=H{uRju-~UHp. For simplicity
we also call Q a candidate chain. If there is any 2-
component ScQ with iD"G(S)=1 then S=8 or 8=5p. Let
FcHj be any 2-component or Z1-augmenting sct of G.
Then iLDG(F):ES-CF,S-eZliD"(S'):O:iD"gv(F) if 1<i<m.
Suppose that FcHy. If SynF=¢ then iLDG(F)=0=iD"G'(F).
If S1<F then iD"G(F)=0, while iLDG(F)=iD"G(S1)e {0,1).
Next suppose that FcHp . If FASpy =¢ then
iLDG(F)=0=iD"G(F). We have

iLDG(F)=iD"G(Sm)=iD"G(F)e {0,1} if SpcF.
Thus we obtain the next proposition.

Proposition 11. Let Fy ( Fy,, respectively ) be the
2-component of G' with S{cFicH| ( SpeFmcHp ). Then
iD"G'(F1)=0 and iLDG(Fp )=iD"G(Sp)=iD"G'(Fm)-

Proposition 11 shows that there are four possible
combinations as shown in Table 3. Let FicHj, Isism, be
any Zj-augmenting set if it Suppose that
V(G)e Z4. Then up=up'e Sy and uy=uy'e Tpy. Hence either

exists.

(i) or (ii) is possible:
(i) iD"G(SP=iD"G(Sm)=1.
(ii) iD"G(S1)=1 and iD"G(Sy)=0.
Since any other Se Zp', S#Fj ( 1sism ), is a 2-component
of G, we can easily show that iD"G(8)=iD"G(S). Thus
iLDG(V(G))-iLDG(V(G")
=iD"G(Sl)+iD"G(Sm)-[iD"Gv(F1)+iD"G-(Fm)}=1,
and we obtain the following proposition.

Proposition 12. If V(G)eZ4 then iLDG (V(G))-

iLDG(V(G)=1.

Next suppose that V(G)e Zs and V(G)2Z4. Let
W, Wp (n22 ) be a sequence of weak 2-components
satisfying the following (1) and (2) ( Figure 3 ).

(1) upe W1 and uje Wp.

(2) There are n-1 edges cj=(vi,w;), wherc vie Wi,
wie Wi, for Isisn-1, and we sct up=wq and uj=vy.

Shrink each Wj into xj for 1<i<n, where xj=up and
xp=u], and dcnote the resulting graph by Tw . Let
Cw={Wijlxj is a cutpoint separating uy from up inTywl,
and lct Qw denote the union of all members of Cw. Qw
is a weak 2-component of G' and any other W'e Zy',
W'cV(G)-Qwy, is in Z4. Let QEW | be the cardidate chain
with respect to wj_] and vj. Then, by Propositions 11
and 12,

iLDG(W)-iLDg(wq)=1 and iLDC,(Wj)=iLDC;v(Wi)
for cach j, 2<j<n. Any 2-component S of G' is a 2 -
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component of G and iD"G(S)=iD"G (8). It is casy to sece
that iDG(W)=iDG(W) for any weak 2-component W of G
with We Cyy. If I<i<n, that is, xj is a cutpoint of I'yy then
iIED(W()=0<iLD(W;) and, therefore,
iDG(Wj) =iLDG(W;) =iLDG(Wj).
For Wj,
iLDG(W1) 21 =iIEDG(W1) and, therefore,
iDG(W 1)-iDG(W )=iLDG(W )-iDG(W)=1.
Wyn. iEDG (W q)=1.
iLDG(Wp)21 and, therefore,
iDG(Wp)-iDG(Wp)=iLDG(W)-iDG(Wp)=0.
If 1Z41=2 then Qw=V(G). If 1Z41>3 then iEDG(Qw)=0. If
1Z41=3 then
iLDG(W )+IiLDG(W )22,
iLDG(W )+iLDG(W)-iLDG(Qw)=1 and
iLDG{(Qw)21=iEDG{(Qw).
Therefore iDG'(Qw) =iLDG(Qw) in any case. Hence
iLDG(V(G)-iLDG(V(G')=L,,¢ CwiDQ(W)-iDG'(QW)
max {iLDG(W),iED(W)}-Z,, . CwiLDG‘(W)
(LDG(W)-iLDG(W))=ILDG(W 1)-iILDG(W()=1.

For Then we can show that

“IyeCw
:XweCW
Thus we obtain the next proposition,

Proposition 13. If V(G)eZs and V(G)eZ,4 then

ILDG(V(G)-iLDG(V(G))=1.

Finally suppose That V(G)eZg and V(G)¢Zs. Then
the discussion is analogous to the previous cases, and

we can prove the following proposition.

Proposition 14. If V(G) €Zg and V(G) €Z5 then
iLDG(V(G))-iLDg (Vg N=1.
so far in the next

We summarize the discussion

lemma.

Lemma 2. a(G)SD(G).
Proof. if D(G)=1 then a(G)=D(G)=1 by Proposition 9.
if D(G)=k21
consider any graph G with D(G)=k+1.

Assume that then the lemma hold. Now

By Proposition
14, there is an adimissible pair uj,up such that D(G)-

D(G")=1, meaning that o (G")SD(G"). Hence
D(G)=D(G)+12a(G")+1=a(C). Q.E.D.
“Combining Lemmas 1 and 2 shows our main
theorem.
Theorem 1. a(G)=D(G).
4. Concluding remarks
We briefly mention time complexity of the

proposed algorithm as follows.

(1) Mg (u,v) for all pairs u, v can be computed in
OWVIER2) time [2,4).

(2) Elcments of Zj ( 1£j<6 ) can be determined and
the component T(G) can be
O(IVIZ) time, where vertices of T(G) represent
elements of Zj, 1<j<6, and vertices of V(G) with edges
recpresenting  inclusion among thosc clements. The
first level is the vertex for V(G), its sons represent
clements of Zg and their sons do those of Zg, and so on,

until each vertices of V(G).

tree constructed in

(3) D(G) is obtained in O (IENVI) time and an
admissible pair can be found in O(IVl) time.
Therefore G’ can be constructed in

O(VI(IVI+IEI3/2)). Repeating this procedure D(G) times
determines a solution. Since D(G) is O(IVI),
IVIAVIHEB2) 4+ 1VIGVI+(1E1+1)3/2) 4.
HVIQVI+UEI+D(G))3/2)<D(G)IVI2+IVI2(IEi+D(G))3/2,
which is O(VIZ(IEI+IV1)3/2y,
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Table 1. Computation of D(Gy) for Gy (excluding bold
lines) of Figure 1, where iLD(V(G]))=5 and oLD(V(G1)=7.

Z; S(8){10)(11}(12}{13} Zy S{8}{10}{11}{12)(13)
iD 00 0 1 1 2 oD 01 1 2 2 1
iD'10 0 1 1 2 oprolr 1 2 2 1
iD"10 0 1 1 2 oD"01 1 2 2 1
Zy H{10}{11)(12){13) Zy H(10){11){12}{13)
ikb 1. 0 1 1 2 obD 1 1 2 2 1
iED 1 0 1 1 2 oED 1 1 2 2 1
Zy  P{10}(11}{12} {13} zZ3  P{10}(11){12}{13}
iLD'1 0 1 1 2 oLD'1 1 2 2 1
iED 1 0 1 1 2 oED 1 1 2 2 1
Zgq W{10}{11}{12}{13} Zg4 W(10}{11}(12)(13}
Figure 1. A directed graph G and a solution itb 1 0 1 1 2 obD 1 1 2 2 1
(bold lines) for Gj. iED 1 0 1 1 2 oED 1 1 2 2 1
iD 1 0 1 1 2 oD 1 1 2 2 1
Zs X({11}{12}{13}) Zs X[11}(12}{13}
iLD 11 1 2 olD 2 2 2 1
iED 11 1 2 oED 0 2 2 1
iD 11 1 2 oD 2 2 2 1

Zy S{8)(101{11}(12){(13)  Zy S{8}{10}{11){12)(13)
iDOO 0 1 1 1 oD 01 1 1 2 1
iD’1O0 0 1 1 1 oD 01 1 1 2 1
iD'10 0 1 1 1 oD" 01 1 1 2 1
Z, HiHp(11)(12) {13} 7, H Hy(11)(12){13)
LD 00 1 1 1 D10 1 2 1
iED 10 1 1 1 GED 00 1 2 1
Z3 PyPo(11](12}{13) 73 PPo(11){12)(13)
iLp’1 0 1 11 D11 1 2 1
iED 1 0 1 1 1 OED 00 1 2 1
24 W(11){12}(13) Z4 W(11}{12)(13)
LD 1 1 1 1 oLD 2 1 2 1

iED 1 1 1 1 GED 0 1 2 1

iD 1 1 1 1 oD 21 2 1

Zs X{12) 75 X(12)

iLD 3 1 oLD 4 2

iED 2 1 oED 1 2

iD 31 oD 42

Table 3. Four combinations of iD"G(S), iD"G(Sm).
iD"G(F1) and iD"G«(Fy).

Ui=vg

DGy iD'GSm)  iD'G(F)  iD'g(Fm)

& =a candidate chain

1 1 0 1
1 0 0 0
Figure 3. An illustration of the situation 0 1 0 1
of the case where V(G)eZs and V(G)eZa. 0 0 0 0
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