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Abstract

In this paper, two network optimization problems
are studied. In a minimum delay Steiner tree prob-
lem, a graph G = (V, E}, a source set S and a
destination set D are given, where S, D C V. The
question is to find a Steiner tree containing ver-
tices in both D and S such that the maximum
distance between any pair of vertices s € S and
d € D is minimized. This problem is shown to be
O(|E|mlogm+|V|(|E|+|V]|log|V])) time solvable,
where m = |DUS/|. In a network extension problem,
we want to find a minimally connected subgraph @
of graph G = (V, E) containing a given connected
subgraph G’ of G such that the diameter of G is
minimized. An O(|V||E|log|V}) time algorithm is
presented.

1 Introduction

In this paper, we propose two problems in which
the length of signal paths is used as the objective
of optimization. In a communication network, a
vertex of a graph is usually used to represent a
station in the network and edges represent connec-
tions between the stations. An edge can be asso-
ciated with weight to denote signal delay between
two stations. Given an edge ¢ = (1,7) of a tree
T =(V,E), T;: = (V;,Ei) and T; = (V;, E;) de-
notes the trees resulted from the deletion of e from
T, where ¢ € V; and 5 € V; respectively. The length
of a path, defined as the sum of the weight of each
edge of the path, is used to represent the total sig-
nal delay along the path. The distance between two
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vertices is defined as the minimum length of the
paths between them, and thus is a lower bound of
the communication delay. The diameter of a graph
is defined as the maximum distance for all pairs of
vertices. The distance between two vertices is also
called the signal delay between the vertices. The
distance between vertices z and y with respect to
a graph G is denoted as dist;(z,y). We have pre-
viously studied the problem of minimum diameter
spanning tree [4], in which the goal is to gener-
ate a spanning tree such that the diameter of the
tree is minimized. If the stations in a communica-
tion network are regarded as uniform in the sense
that each station is allowed to broadcast signals to
all the others, then a minimum diameter spanning
tree minimizes the maximum signal delay. But the
role of a station in a network can be quite differ-
ent. For example, some stations may be assigned
as broadcasting centers while some others are au-
thorized to accept the information. In this case,
we formulate the minimum delay Steiner tree prob-
lem in which broadcasting centers are called the
source vertices and authorized stations as the sink
vertices. On the other hand, we also consider the
problem of upgrading a network based on the cur-
rent installations with the objective of minimizing
the maximum signal delay, which is called the net-
work eztenston problem.

We now formally introduce the two problems as
follows:

Problem 1 (Minimum delay Steiner tree

problem) Given a positive weighted graph G =
(V,E), a set S C V of source vertices and a set
D C V of destination vertices, find a Steiner tree



T containing all the vertices tn S'U D such that
the maztmum signal delay of T 1s minimized, where
the mazsmum signal delay refers to the mazimum
among the distance between each pair of source and
destination vertices.

Problem 2 (network extension problem)

Given a positive weighted graph G = (V, E) and a
connected subgraph G' = (V' E') of G, find a min-
imally connected spanning subgraph G* of G con-
taining G’ such that the mazimum signal delay on
G* 1s minimized, where the mazimum signal delay
refers to the marimum among the distance between
each pair of vertices of G*, 1.c., the diameter of G*.

The problem of minimum delay Steiner tree is
studied in section 2 and the problem of network
extension is studied in section 3.

2 Minimum Delay Steiner
Trees

In this section, the minimum delay Steiner tree
problem is studied. We’ll show that the domain of
searching for a minimum delay Steiner tree can be
reduced to only a subclass of Steiner trees, called
the canonical Steiner trees. The definitions of vir-
tual graph and virtual tree and that of canonical
Steiner tree are first given as follows.

Definition 1 Let ¢ = (t,7) be an edge of a posi-
tive weighted graph G = (V,E) and 0 < § < w(e),
where w(e) > 0 denotes the weight of the edge
e. The graph (V U {v},E U {ei,e;} — {€}) 15 said
to be a virtual graph of G denoted as G(¥}{e,8),
where v s called the virtual vertez and e; = (v,1)
with weight w(e;) = 0 and e; = (v,7) with weight
w(e;) = w(e) — 6 are called the virtual edges.

Definition 2 Let T = (Vr,E7) be a subtree of
G = (V,E) containing every vertez in SU D and
for every leaf v € Vr, v € SUD. T s said
to be a canonical Steiner tree of G if there exists
e € Er and 0 € § < w(e), such that V vertez u
of the virtual tree T'¥) (e, 8), the path from u to the
virtual vertez v of T(")(e,ﬁ) 15 a shortest path in
el }e,B)A canonical Steiner tree T 1s also denoted
as T(e) (e, §).

Lemma 1 There 1s a canonical Steiner tree which
ts a minimum delay Steiner tree of the given graph

G = (V,E) with source set S and destination set

Proof: Let T* be a minimum delay Steiner tree
and s and t be the pair of source and destination
vertices defining the maximal signal delay on T~.
Let T' be the subtree created by recursively delet-
ing every leaf Steiner vertex from T. By identify-
ing the path P between the vertices s and ¢, the
weighted center edge e of P is said to be the c-
edge of T' and thus that of T*. Now, let’s define
6 = (w(e) — distr-(di,2) + distr-(d;,7))/2, where
vertex d; in 7" and vertex d; in T; are the extremes
of a diameter of T’ passing through e. Since ¢ is a
c-edge of T', 0 < 6 < w(e) is satisfied. Note that s
and ¢t must lie on different sides of ¢ unless § = 0 or
w(e). We are going to show that the maximal sig-
nal delay of T = T(°)(e,6) is no greater than that
of T*, the minimum delay Steiner tree.

Let s’ and t' denote a pair of source and desti-
nation vertices defining the maximal signal delay
of T. Consider the first case in which s’ and ¢’ lie
on different sides of e. Without loss of generality,
assume s’ be in T; and t' be in T;. Now, we have

maztmal signal delay of T

dist(s',1) + w(e) + dist(t', 5)
dist(s',1) + w(es) + w(e;) + dist(t', 7)
distoo (8',0) + distg (¢, v)
distpe(e) (Sl,v) + distracn (tl, U)
distr.(.) (3, v) + distT.(.) (t, U)
mazimal signal delay of T.
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Since T* is optimum, only equality exists. This
completes our proof. ¢

The proof of lemma 1 also indicates that if
T(¢) (e, ) is the minimum delay Steiner tree, then
the subpath of T(¢){¢, §) between a pair of source s
and destination ¢ defining the maximum signal de-
lay of T(%) (e, 8) must passes through at least one of
the vertices ¢ and 7, where e = (1,7). As a conse-
quence, we don’t have to generate the tree Tt¢) (e, 6)
and calculate its maximal signal path in searching
for the optimal combination of ¢ and 6. In stead,
the criterion

z(e,0) = max distge(s,v) + max distgs(t,v)



is associated with each selection of ¢ and 4, where
v denotes the virtual vertex of the virtual graph
G"(e,8). Note that this measure over-estimates the
maximal signal delay of a non-optimal T(¢)(e, 9),
but it equals the maximal signal delay of T(C)(e, 6)
if T(°)(e,0) is optimal. That is, the minimizer of
2(e,6) also minimizes the maximal signal delay of
T() (e, 9).

Note that for each edge e = {1,7) € E, 6 assumes
any real value in the interval [0,w(e)]. Thus, it
can be viewed as a continuous optimization prob-
lem. But, we are going to show that this prob-
lem is discrete in nature. Note that, two values 6,
and 63, 0 < 41,6, < w(e), may give the same tree
T (e,8,) = T()(e,65). In this case, §, and 6,
are said to be related by a relation R.. The rela-
tion R. is an equivalence relation and it partitions
the interval [0, w(e)| into several equivalent classes.
Note that |dist(u,1) — dist(u,j)| < w(e) for each
u € V. For each vertex u € V, the critical value is
defined as . (u) = ((w(e) —dist(u,i)+dist(u,5))/2,
0 < 6.{u) < w(e). A critical value 8.(u) di-
vides the interval [0,w(e)] into two subintervals
I ;(u) = [0,0.(u)) and I ;(u) = (f(u), w(e)]. For
every § € I i(u), u belongs to the subtree T,
where T° denotes the tree T1)(¢,8). For every
6 € I ;(u), u belongs to the subtree T5. In the
former case, distre(u,1} = dist(u,t), and in the
latter case, distre(u,7) = dist(u,7). The partition
of the interval {0, w(e)] by R, is determined by the
critical values 6.(u),u € DU S. Furthermore, it is
not difficult to show that z(e, §) will take its local
minimum only at the critical values.

To solve the problem, algo-
rithm minimum_delay_Stetner_tree first constructs
the distance matrix. Then, for each edge ¢ = (1, 7),
the function Calculate_delay_Steiner_tree(e) com-
putes a local minimum of z(e,#) among the criti-
cal values 8,.(u), v € DU S. The global minimum
z(8, l;) is thus determined. The Canonical Steiner
tree T(c)(é,é) is then reported as the optimum so-
lution.

Detailed implementation of the algorithm is pre-
sented in the following:

begin
Calculate the distance matrix;
M = inf;
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for each edge ¢ = (1,7) € E do

begin
T (M) = Calculate local_minimum(e);
if M < M then
M= M;
é:=e; §:= 6;
end;
end;
Report the tree T¢¢) (2, 8);

end.

Calculation of the distance matrix can be done ei-
ther by Floyd’s algorithm [2] in O(]V|?) time or
the shortest path algorithm due to Fredman and
Tarjan [3] in O(|E||V| + [V|?1log|V]|) time. The
function Calculate_local_.minimum(e) can be imple-
mented by an O(mlogm)-time algorithm as de-
scribed in the following, where m = |S U D).

The function Calculate_local_minimum(fe) re-
turns two values, M, the local minimal z(e, 6), and
0, the local minimizer of z(e, #). The function first
sorts the vertices into non-decreasing order using
the critical values 8.(u), u € SUD, as the keys. De-
note the sequence of vertices as vy, v,, ..., v,, where
n = [V|, and the sequence of critical values with-
out repetition as 6y, 0,,...,6,, where n = |V| and
1 < a < n. The algorithm then scans through the
sequence for the local minimizer. A vertex u is said
to be unscanned if 6.(u) is greater than the current
critical value and is said to be scanned, if otherwise.
At the [th step of the scanning, the farthest source
and the farthest destination from the current vir-
tual vertex v are identified so that z(e, ;) can be
calculated based on the formula introduced above.
To determine the farthest source and destination
from v, the algorithm maintains for both source
and destination vertices the farthest scanned vertex
from v, SVs and SVp respectively, and a sorted list
of unscanned vertices, denoted as ULs and ULp.
Note that the unscanned vertices are sorted by their
distances from ¢ or equivalently from v. These data
structures can be updated as follows: let [ be the
current iteration, i.e., # = 6;. Let u; be a vertex
satisfying 6(e,u) = 6;. Then ULs is updated by
the deletion of u; and SVs is changed to u; if u; is
farther from v than is SV, or remains unchanged
otherwise. Obviously, the total updating steps take



O(m) time. It is not difficult to see that the objec-
tive function z(e, 8) can then be performed in O(m)
time. Thus, Calculate_local_mintmum(e)can be im-
plemented in O(mlogm) time. Complexity of this
algorithm is O(|E|mlogm + |V ||E| + [V |* log |V |).

Theorem 1 The mintmum delay Steiner tree prob-
lem can be solved in time O(|Elmlogm + |V||E| +
[V|?10g|V]|), where m = 1S U D|.

3 Network Extension Prob-
lem

In this section, an algorithm is presented to solve
the network eztension problem. In this problem, we
are given a connected graph G = (V, E) and a con-
nected subgraph G’ = (V', E') of G. A subgraph
H of G is said to be a feasible eztended network of
G' with respect to G if H is a minimally connected
supergraph of G'. The goal is to find a feasible
extended network H such that the diameter of H
is minimized, where the diameter of a graph is de-
fined as the maximum among the shortest distances
between each pair of vertices. A feasible extended
network with minimum diameter is also called an
optimal eztended network of G' with respect to G,
or an optimal extended network of G' for short.

In the following, we are going to give the defini-
tions of feastble paths or F-paths for short.

Definition 8 A simple path P(vy,ve,...,vk) in
G = (V,E) is said to be an F-path with respect
to a subgraph G' = (V', E') of G if and only +f
,5,1 <i<j <k such that v, viqq,...,v; €V’
and vy, V2,.. ., Vi—1, Vj41, Vj42, -, 0k €V — V.

In other words, the subgraph G’ is treated as a
supernode in defining an F-path. Also note that,
every simple path of a feasible extended network H
is an P-path because H is minimally connected by
definition.

Lemma 2 Let H be a feasible extended network of
G' with respect to G, then every path on H 1s an
F-path.

Definition 4 Given two vertices vy and v € V
of a graph G = (V,E), the F-distance between
vy and v, ts defined as the total length of the

shortest F-path between the two vertices denoted
as distE(vi, v2)-

"We'll show later that the F-distance can be cal-

culated using a modified version of Dijkstra’s algo-
rithm in O(|E|+|V |log |V|) time, where |S| denotes
the cardinality of a set S. The modified Dijkstra’s
algorithm also generates a spanning tree T of the
graph G. For each vertex v € V, the path from v
to s on the computed spanning tree T is a shortest
F-path. As a result, we'll call the spanning trees
generated by the modified Dijkstra’s algorithm the
F-trees.

Definition 5 A spanning tree T of a connected
graph G = (V, E) is called an F-tree rooted at ver-
tezx s € V if for each vertez v €V, the path from v
to s on the tree T is a shortest F-path.

Given an edge ¢ = (1,7) € E and a Let T be
a tree containing edge ¢ = (z,7) and 6 be a value
satisfying 0 < § < w(e). value 0 < 8 < we), let
T be a tree containing the ~dge e, The associated
virtual tree T?(e, 8) of T and the associated virtual
graph G¥(e,8) of G are defined by replcing the edge
e with the edges ¢; = (¢,v) and e; = (j, v}, where
v &V is called a virtual vertex.

Definition 6 A spanning tree T = (V,Er) of
graph G = (V,E) s said to be an A-tree of G if
there ezists an edge ¢ € Er and 0 < 6 < w(e) such
that T®(e, ) is the F-tree of G*(e, ) rooted at v.
In this case, T is also denoted as A-tree(e,6). The
network constructed by the union of the edges in G'
and A-tree(e,9) is also denoted as A-network(e,6).

Let’s now identify the c-edge e = (1, 5) of the op-
timal extended network G* of G’ by first identifying
a diameter of G', then the weighted center edge of
the diameter is the desired c-edge. The value § is
defined as

8 = (w(e) + disth. (7, v;) — distE.(i,v:))/2,

where v; and v; are the extreme vertices on the se-
lected diameter. It is not difficult to show that the
diameter of the A-network(e,6) is no greater than
that of G*. In other words, the optimal A-network
which gives minimum diameter is also the optimal
extended network of G'.



By a similar argument as used in the previous
section, only O(n) 6 values needs to be examined
to find the local optimizer (e,§) with respect to an
edge ¢ once the distance matrix distp(z,y),Vz,y €
V is given.

The algorithm calculates M, which is defined
as the minimum of the sum of largest and sec-
ond largest dist5(z,v),Vz € V, where v is the
virtual vertex of the A-network(e,8). The proce-
dure Calculate_local.minimum(e) is similar to that
introduced in the previous section and is also an
O(nlogn) time algorithm, where n denotes the
number of vertices in V.

Finally, we are going to study the complex-
ity of the calculation of the distance matrix
distE(z,y),Vz,y € V. Before proceeding, we make
the assumption that the subgraph G’ is given by
specifying the adjacency matrix. Which allows
O(1) time operation in identifying if an edge (z,y),
given by the two adjacent vertices, is an edge in
G'. In calculating the distance matrix dist5(z,y),
we follow Fredman and Tarjan’s [3] Fibonacci heap
implementation of Dijkstra’s shortest path algo-
rithm [1] with the following modifications. Let P
denote an F-path from s to u, and v be the vertex
on P preceding u. P is said to be of type 1 if every
vertex on P is not in the subgraph G'. P is said
to be of type 2 if the path from s to v is of type 1
or 2 and the edge (v,u) € E'. P is said to be of
type 3 if the path from s to v is of type 2 or 3 and
the vertex u ¢ V'. Notice that an F-path must be
of type either 1, 2 or 3. An extra flag flag(z) is
used to designate the type of the tentative shortest
path from s to z. Also note that in the scanning
step, a path of type 1 is given higher priority than a
path of type 2, vice versa. The flag of every vertex
is initially set to 1 and that of s is then set to 2
if s € V'. In the scanning step, when a vertex v
with d(v) minimum is selected, if the path formed
by concatenating the edge (v,u) and the tentative
shortest path from s to v becomes the new tenta-
tive shortest path from s to u, the flag of the vertex
u is reassigned according to the following formula:

1. if flag(v) =1 and u g V', then flag(u) = 1;

2. if flag(v) = 1 or 2 and (v,u) € E, then
flag(u) = 2;

3. if flag(v) =2 or 3and u € V', then flag(u) =
3.

It is not difficult to show that the given al-
gorithm does the computation of the matrix

‘distE(z,y),Yz,y € V in O(|E|[V] + [V|?log|V])

time using Fredman and Tarjan’s implementation.

Lemma 8 The distance matriz dist5(z,y),Vz,y €
V, can be computed in O(|E|[V|+|V|?log |V|) time.

Note that the algorithm requires sorting of the
critical values. The total time taken by the sort-
ing steps is O(|E||V|log |[V|) which is also the time
complexity of the algorithm.

Lemma 4 The network eztension problem can be
solved in O(|E||V|log |V]) time.

4 Summary

In this paper, we propose and study the problems of
minimum delay Steiner tree and that of network ex-
tension. The problems are solved in O(|E|mlogm+
|E||V[+]|V]?log [V]) and O(JE||V|log [V ]) time, re-
spectively. It can be shown that these two com-
plexities can be further improve to O(|V |mlogm +
EV| + [V [?log|V]) and O(IEIIV| + [V log |V ),
respectively, by using the ordering of vertices by
their distances to the vertex 1 when the edge ¢ =
(,7) is chosen (in stead of using the critical val-
ues for the ordering). In cases where the vertices
are also weighted, our discussions still apply with
necessary but simple transformation. If the given
graph is directed, the weight of an edge is en-
hanced by the weight of its destination vertex and
the weight of each vertex can then be regarded as
zero. In an undirected graph, we simply replace
each edge by a pair of anti-parallel edges incident
on the same pair of vertices as the original edge.
The previous transformation then can be applied.
Our formulation of the minimum delay Steiner tree
problem reflects the asymmetrical roles that ver-
tices could play in a some applications. It’s in-
teresting to consider further generalizations of the
asymmetry. In the network extension problem, we
made the assumption that the given subgraph is
connected. This assumption can be relaxed. We



strongly believe that the relaxed problem is still
polynomial time solvable.
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