v o

g

FITY XL 1 2—6
(1989. 11, 20)

th S Bipartition of Biconnected Graphs

;‘; LAY “Hitoshi Suzuki, Naomi Takahashi and Takao Nishizeki

-

Department of Electrical Communications
Faculty of Engineering, Tohoku University
Sendai 980, Japan

Abstract. This paper presents a linear algorithm for finding two disjoint
connected subgraphs in a biconnected graph each of which contains a
specified vertex and has a specified number of vertices.

1.INTRODUCTION

We present a linear algorithm for solving
bipartition problem for a biconnected graph. The
biparitition problem is the following:

Input: (1) an undirected graph G = (V, E)
with n = |V| vertices and m = |E|
edges;
(2)s1,82 € V,s1 #s25and
(3) two natural numbers n;,np, € N
suchthatn; + np = n.

Output:  a partition (Vy, V2) of vertex set V such

that
(@)sy € Viand sy € Va5
(b) |V1| =m and]Vzl = my; and
(¢) Vi and V7 induce connected
subgraphs of G.
Fig. 1 depicts an instance of the problem above
and a solution of it.
Clearly the problem has no solution for some
graphs.
whether the above problem has a solution is

Furthermore the problem determining

NP-complete if G may be not biconnected[DF].
However, Gyo6ri and Lovasz independently proved
the following theorem.

n=6 @ :vertexinV,
ns=5 @ :vertexinV,
Fig. 1 An instance of the bipartition problem and

a solution(thick lines depict the subgraphs induced
from V, and V,).

THEOREM 1 [Gy,Lo]. If G is k-connected,
then k-partition problem has a solution. n

The k-partition problem is one to find &
disjoint connected subgraphs in a graph each
of which contains a specified vertex and has a
specified number of vertices. Since the bipartition
problem is a subproblem of k-partition problem,
it necessarily has a solution if the given graph



G is biconnected. Although the proof by Gyori
provides a polynomial algorithm if & = 2, naive
implementation of the algorithm does not run in
linear time.

Our algorithm is not based on the proofs but
based on characteristics of a depth first search tree
in a biconnected graph.

2. PRELIMINARIES

Let G = (V, E) be an undirected connected
graph with vertex set V and edge set E. The
vertex set and edge set of a graph H are denoted
by V(H) and E(H), respectively. For an edge
(v,w) in a graph G, G/(v,w) is the graph
obtained from G by contracting edge (v, w), that
is, identifying two vertices v and u and removing
the resulting self loop and multiple edges, if any.
For two vertices v and w in G, G + (v, w) is the
graph obtained by adding new edge (v, w) to G if
G does not include edge (v, w), or G otherwise.
For a set X of vertices in V(@G), G — X is the
graph obtained by removing all the vertices in X
and all the edges incident with vertices in X from
G.

Let T be a depth first search tree of G. For
each vertex v € V, the set of descendants of v
including v itself is denoted by DES(v). Clearly
the following lemma holds.

LEMMA 1. Let G be an undirected graph and
T be a depth first search tree of G. Then G is
biconnected if and only if the root of T has exactly
one child and, for each vertex v other than the root
and the child of it, an edge of G joins an ancestor
of the grandparent of v and a descendantofv. W

In this paper, ancestors and descendants of
v € V include v itself.

3. ALGORITHM

In this section, we present a linear algorithm
PART2 for solving bipartition problem for a
biconnected graph G.  Since the subgraphs
of G induced from V; and V, cannot include
edge (s1,s2) even if there is, a solution of the
bipartition problem for G + (s1,52) is always one
for G. Therefore, in the algorithm below, we may
assume that G has edge ( sy, s2). Let T be adepth
first search tree with s; as the root and s; as the
child of the root. Since an edge joins sy and s2, we
can find a depth first search tree like above by first
searching s, . The algorithm is the following.

function PART2(G, T, s1,52,m,m);
begin
()ifm = 1then
return({s: },V(&) — {s1})
elseifn, = 1 then
return(V(G) — {s2}.{s2}%
(2)1et o be an arbitrary child of s2;
if s, has more than one child then {see Fig. 2.
Note that Lemma 1 implies that, for every son
v of s, s1 is adjacent to a vertex in DES(v) }
(2.1)if |DES(a) U {s2}| < m then
begin {include DES(a) into V2 }

Va2 := DES(a);
Gan =G — Vo,
T =T - V23

n,v;) = PART2(G21,T51, 51,52,
n, |[V(Ga) | — m)s
return (V1,V2 U V)
end
(2.2)else {|DES(a) U {s3}| > m, that s,
[(DES(s2) —DES(a) —{s2HU{s1}] < m}
begin {include DES (s2) —DES (a) —{s2}
into V1 }



V1 ;= DES(s2) — DES(a) — {s2};
Gn =G-W,
Tp:=T-W;
(V{,V2) := PART2(G22,T22, 51, s2,
V(G2)| —m,m);
return (Vi UV, Vo)
end

(b) ()

(c)
Fig. 3 (a) G , (b) Gy, and (¢) Gy,

(b)

(3) else {5, hasexactly one child}
begin
let b be an arbitrary grandchild of s;;
(3.1) if s is adjacent to a vertex in DES(b) then
{see Fig. 3}
(3.1.1) #{DES(b) U {s1}] < m then
begin {include DES(b) into V; }
V1 := DES(b);
Gin = G — V1 + (s1,a); {since all
vertices in DES(b) are included into
V1, we may assume that a, the parent of
b, is adjacent to 51 }
Ty =T - Vi3
(V{,V2) := PART2(G3n, T3, s1, 52,
[V(G3i)| —m2,m);
return (v, UV, \2)
end
(3.1.2) else {|DES(b) U {s1}| > m,
thatis, |( DES(a) — DES (b)) U {s2 )| <
m}
begin {include DES (a) — DES(b) into
Va}
V, := DES(a) — DES(b);
G312 == (G —V2) [(52,0);
Ta1z := (T — V2) /(s2,0);
(V1,V3) 1= PART2(G312, T312,
s1,852,m, [V(Ga2) | — m);
return (V1,2 UV;)
end
(3.2) else {s; is adjacent to no vertex in DES(b),
and hence s; is adjacent to a vertex in
DES(b). see Fig. 4}
(3.2.1) if|DES(b) U {s2}| < m, then
begin {include DES(b) into V2 }
V3 := DES(b);
G =G — Vo;



Tsn =T — V25
(W1, Vy) := PART2(G5321,T321, 51, 52,
m, [V(Gan)| —m):
return (V1, V2 UV))
end
(3.2.2) else {|DES(b) U {s1}| > m, that is,
|(DES(a) — DES(b)) U{s2})| < m}
begin {include DES(a) — DES () into
Vi}
V1 := DES(a) — DES(b);
Gin = (G — (Vi —{a}))/(s1,0);
Ts22 := (T — (Vi — {a}))/(s1,0);
{although (s;,a) is not an edge in T,
/(s1,a) is to identify two vertices s
and a. Select s as the root of Ts2; }
(V2,V{) := PART2 (G322, T522,
s2,s1,m2, [V(Gaz)| —m);
retun (V; U V{, V2)
end
end
end;

)
Fig. 4 (a) G , (b) Gyy; and () Gy

The following lemma can be easily proved
from Lemma 1.

LEMMA 2. Modified graphs Ga1, G2z, G,
Gi12, Gaz1 and Gizz in PART?2 are biconnected,
To1, Toa. Ts11, T312 and Tia1 are depth first search
trees with s; as the root in Ga1, G2, Gai1, Gz
and Gag1, respectively, and Ty, is a depth first
search tree with s as the rootin G'3p;. |

One can easily prove the correctness of the
algorithm by using Lemma 2.

In order to implement the algorithm above so
that it runs in O(m) time, we use low(v) and
id(v): for each vertex v € V, low(v) is defined
to be the vertex u adjacent to a vertices in DES(v)
such that the depth first number of v is minimum,

and
0, ifvegViuVy;
id(v) = { 1, ifveV;and
2, ifveV,.

Then we can determine whether s; is adjacent to
a vertex in DES(b) (in (3.1)) by checking whether
id(low(b)) = 1. For each v € V — {51,852},
id (v) is initially set to be zero and must be
updated according to proceeding of the algorithm.
However, it is not necessary to update low(v).
Although, for example, after an execution of
(3.2.2), for some vertices v in DES (a) — DES (),
id(low( v)) may become incorrect, the vertices are
included into V; and hence will not be selected
as b. Therefore, we need to compute low(v)
for all v € V only once at the beginning of the
algorithm. Furthermore, moving s, (or sj)toa
instead of contracting edge (s, a) (resp. (s1,0)),
we can implement the algorithm so that it does not
modifies G nor T'.

A depth first search tree of a graph can be
found in O(m) time. Furthermore low(v) for all
vertices v € V can be computed also in O(m)



time. All the other tasks can be done in O(n) time.
Thus the bipartition problem for a biconnected
graph can be solved in O(m) time.

Remark

A slightly extended problem can be solved by
a similar algorithm. The problem is the following.
Input : (1) an undirected biconnected graph
G = (V,E) with n = |V| vertices and
m = |E| edges;

(2) s1,82,2,y € V, 51, 52,  and y are
all distinct; and
(3) two natural numbers n;,np € N
suchthatn; + mp > n
Output:  apartition ( V7, V2) of vertex set V such
that
(@) sy € Viand s, € Vy;
G Vi =mnm or {z,y} NV # ¢ and
V1] < m);
(b2) V2| = my or {z,y} N V2 # ¢ and
V2| < m); and
(c) Vi and V> induce connected
subgraphs of G.

Our algorithm PART2* which solves the
problem above is similar to PART2, but sets of
vertices which will be included included into V; or
V2 are chosen more carefully. The part of PART2 *
corresponding to (2.1) and (2.2) in PART? is the
following.

(2.1)if (|DES(a) U {s2}| < m and |DES(a) N
{z,y}| #2) or [(DES(s;) — DES(a) —
{s2}) U{s1}| > m) then

begin {include DES(a) into V; }

V2 := DES(a);
Gy =G —Vy;
Ty =T —Vy;

if (DES(a) N {z,y}| = 0 then
(V1,V7) := PART2*(G2, T, 81, 52,
nm,m — (V2]);
else {IDES(a) N {z,y}|=1or2}
begin
7 = min{n,|V(Ga)|~ 1}
(V1,Vy) := PART2(Gn,Tn, 51, 52,
m, [V(Gu)| — )
{if i, < my, then [DES(a) N{z,y}| =
1 and [V(G21)| — n; = 1, and hence
Vi willinclude z or y }
end;
return(V;, 1, UVy)
end
(2.2)else {(|DES (a) U{s;}| > m or|DES(a) N
{z,y}| = 2) and |[(DES(s;) — DES(a) —
{2 U{siHf<m}
begin {include DES(s;) —DES(a) —{s2}

into V; }

Vi := DES(s2) — DES(a) — {s2);
Gy =G —Vi;

Ty =T -V,

if IDES (a) N {z,y}| = 2 then
(V{,Va) := PART2" (G, T2, 51, 82,
m —|Vil,m);
else {{DES(a) N {z,y}| =0or1}
(V{,V2) := PART2 (G2, Tu1, 51, $2,
V(G| —m,m);
{|lV(G2)|—m > 1,since |DES (a) N
{z,y}| # 2 and hence |V(G2n)| -1 =
IDES(a) U{s2}| > m}
return (v U V{, V2)
end

The remaining part of PART2* can be
similarly derived from PART2. |DES (v) N {z, y}|



for all vertices v can be computed in O(n) time.
Thus the execution time of PART2* is O(m).

Acknowledgment

We would like to thank Professors A. Saito,
N. Saito and S. Ueno for helpful discussion. This
research is partly supported by Grant in Aid for
Scientific Research of the Ministry of Education,
Science, and Culture, under grant number: General
Research (C) 01550275 (1989).

References

(DF] M. E. Dyer and A. M. Frieze, On the com-
plexity of partitioning graph into connected
subgraphs, Discrete Appl. Math., 10, 1985,
pp.139-153.

[Gy] E. Gybdri, On division of connected
subgraphs, Combinatorics (Proc. Fifth
Hungarian Combinatorial Coll., 1976,
Keszthely), Bolyai-North-Holland, 1978,
pp.485-494.

[Lo] L. Lovdsz, A homology theory for
spanning trees of a graph, Acta Math.
Acad. Sci. Hunger. 30, 1977, pp.241-251.

_46__



