7Y X A 14—2

(1990. 3. 12)

FEIZITITCREZAF—HERKDBAUFT7ILTY) X L

wAY Wb EET mERRER
HAL KT ZEREE T¥EH

ABBXTR, FEISI7GEE2»032y PS5 16N EEIAILF—HE kK
O 5CREW PRAMLE O H#F 7NV TV XL %25 235, R4 F—ptidGLoia®ELr K
T, BRX—D0F Yy POETORFLYEKET LD TH L. ETOBFNI T IG

ORNBLEES2BE R, OnYlogn)Bd 70+ v ¥ % M\ TO(og?n)is T A 5 4
T-HRERDBIELNTEL, TR 77 70EKTHL. $-ZD7VTY X
LWL, EF Yy PO TORTFrRES N -EBRBOEBO—20B LIt B4 %,
ETORFA_ONENALELH2BE CONAREFE 6204y FAtboTH &
WIRD2WTONC7TVT) X adiBohnsd, B, FREIZIF70REENR-_4HD
MOBRKABONELEYRDBENCT VT YU XA HB6N 3.

Parallel Algorithms for Finding Steiner Forests
in Planar Graphs

Hitoshi Suzuki, Chiseko Yamanaka and Takao Nishizeki

Department of Electrical Communications, Faculty of Engineering
Tohoku University, Sendai 980, Japan

Abstract. Given an unweighted planar graph G together with nets of terminals, our
problem is to find a Steiner forest, i.e., vertex-disjoint trees, each of which interconnects all
the terminals of a net. This paper presents several NC algorithms to solve the problems in
parallel. An algorithm for the case all the terminals are located on the outer boundary of G
runs in O(log? n) time and uses O(n?/logn) processors on a CREW PRAM, where n is

the number of vertices in G. An algorithm for the case all the terminals of each net lie on
one of a fixed number of face boundaries runs in a poly-log time using a polynomial
number of processors. On the other hand an algorithm for the case all terminals lie on two
face boundaries runs in O(log? n) time using O(n®/log n) processors. Furthermore we give

an NC algorithm for finding a maximum number of internally disjoint paths between two
specified vertices in planar graphs.

(1)

1. Introduction

A Steiner forest of an undirected graph G is a set of disjoint trees each of which interconnects
all the terminals in each net. Although the well-known Steiner tree problem is to find a minimum
tree interconnecting all specified terminals in a given weighted graph, we do not require that a
Steiner forest has the minimum total weight of edges or a minimum number of edges. Therefore
our problem is a generalization of the disjoint path problem. Since the disjoint path problem is
NP-hard even for planar graphs [Lyn] or plane grids [KL,Ric], so is our problem if there is no
restriction on the location of terminals. .

Robertson and Seymour [RS] and Suzuki, Akama and Nishizeki [SAN] obtained sequential
algorithms to solve the problem for the case that G is planar and all the terminals are located on
two face boundaries. Their algorithms run in O(n’) and O(nlog n) time, respectively, where n is
the number of vertices in G. Furthermore Schrijver showed that a Steiner forest of a planar
graph can be found in O(n*? log? n) time if all the terminals lie on a fixed number h of face
boundaries [Sch1,Sch2].

In this paper we present a parallel algorithm for finding a Steiner forest in a planar graph G in
which all terminals are located on the outer boundary. Fig. 1 depicts a planar graph G and a
Steiner forest, where all the terminals of ten nets lie on the outer boundary, and a Steiner forest
of ten disjoint trees is drawn in thick lines. Our algorithm runs in O(log? n) time and uses
O(n®/log n) processors on a CREW PRAM model. The algorithm can be extended for the case
all the terminals of each net lie on one of h specified face boundaries. For that case we can find
a Steiner forest in a poly-log time using a polynomial number of processors if h is constant.
Furthermore, using similar algorithms, we can find a Steiner forest in a planar graph in which all
terminals lie on two face boundaries in O(log? n) time using O(n®/logn) processors, and also
find a maximum number of intemally disjoint paths between two specified vertices in a planar
graph in the same time using a polynomial number of processors.

2. Tight Steiner Forest

Let G=(V,E) be an undirected planar graph with vertex set V and edge set E. We
sometimes write V = V(G). Let n be the number of vertices in G, that is, n= |V|. We assume
that G is connected and embedded in the plane. We denote by B the outer boundary of G. For two
graphs G and G', G+ G’ means a graph (V(G) UV(G"),E(G) U E(G")). A set of vertices on
the outer boundary B of G are designated as terminals. A net is a set of terminals that are all to be
interconnected. A net set S = {Ni1,Na,...,Ni} is a partition of the set of terminals. Then a
network N = (G, S) is a pair of a planar graph G and a net set S. A Steiner forest of network N
isaforest F=T)+ Ts + ---+ T in G such that N; C V(T;) for each tree T; in F. For simplicity
we often call F a forest of \L. Hereafter we assume that there exists a Steiner forest in a given
network AL. In this section and the next section, we assume that the outer boundary of G is a
simple cycle, and that every vertex on the outer boundary is designated as a terminal(see Fig. 2).
We will show later in Section 4 that this assumption does not lose any generality.

(2)

Fig. 1 A network and a Steiner forest.

4 to the network in Fig. 1.

Fig. 2 A network after applying step (1) in Section

)

(3

Let e = (vp, vo) be an arbitrary edge on the outer boundary of G, and let the vertices
vo,v1,v2,- - -, Uy appear on the outer boundary clockwise in this order. For each vertex v on the
outer boundary, index(v) denotes the index of v, that is, index(v) =1 if v=v;. Informally a
Steiner forest F' of N\(is tight if F' is compacted as far away from e as possible. We now formally
define a tight forest below.

Let N;, N; € S. The starting terminal s(N;) of a net N; is the terminal of N; appearing first
on the outer boundary clockwise going from vg, while the end terminal t(N;) of Nj is the terminal
appearing last. If index(s(N;)) < index(s(N;)) < index(t(Ny)) < index(t(N;)), then we write
N; < N;, and Nj is called an ancestor of N;, and N; is called a descendant of N;. Note
that either index(s(N;)) < index(s(N;)) < index(t(N;)) < index (t(N;)) or index(s(Nj)) <
index (t(N;)) < index(s(N;)) < index(t(N;)) holds if index(s(N;)) < index(s(N;)) and N
has a Steriner forest. The relation < is a partial order. We also use symbols < and ». If N; has
one or more ancestors, then there exists its minimum (youngest) ancestor, which is called the
parent of N;. Nj is a child of N if Nj is the parent of Nj.

Let F be a Steiner forest of A. If, for every net N; and every vertex
v € (V(G) = V(B)) NV(T}), there is a face whose boundary contains both vertex v and a vertex
on the tree of a child of N;, then F is called tight for edge e or simply tight. One can easily prove

the following lemma.

LemMa 1. If a network AL = (G, S) has a Steiner forest, then also has a tight Steiner forest
for any edge e on the outer boundary of G. |

Suzuki, Akama and Nishizeki obtained a linear-time sequential algorithm for finding a Steiner
forest of network N = (G,S) [SAN]. The algorithm finds a Steiner forest by repeating the
following steps (1) and (2):

(1) for a net N; which has no child, find the walk on the outer boundary of G going clockwise
from s(N;) to t(N;), and let T} be a spanning tree in the walk;
(2) remove the walk from G.

One can easily implement the algorithm above to run in linear time. However, it seems that
the algorithm above cannot be easily transformed into a poly-log algorithm on a PRAM. In the
algorithm shown below, we find all trees T} in parallel using a shortest path algorithm.

3. Lemmas

For two vertices u and u' in G, a vf-path between u and v is a sequence of vertices
wow) - - - Wy, such that wo = u, w,, = v’ and w;, and wy, lie on the same finite face boundary for
every i, 0 < i < m. We define the length a v f-path wow) - - - wy, to be m, and define the distance
d(u, u') between two vertices u and v’ to be the minimum length of v f-paths between u and u'.

(4)

For every terminal v in a net Nj, we denote by anc(v, i) the ith ancestor of the net Nj, that
is, if N; has [ancestors,

Nj, 1=0;
anc(v,i)={thcparentofanc(v,i—l), 1<i<li;
09, [<i.

For every vertex v € V(G), define
F(v) = MIN {anc(u,d(u,v))|u € V(B)},

where N < oo for every net N € S and MIN{N,N'} = N if N < N'.

The following two lemmas guarantee that F(v) is well-defined and induces a Steiner forest of
A

LemMa 2. If A\ = (G, S) has a Steiner forest, then the set C(v) = {anc(u,d(u,v))|u €
V(B)} for every vertex v € V is a totally ordered set on the relation =<, that is, either
anc(u,d(u,v)) < anc(w',d(u’,v)) or anc(u',d(u',v)) < anc(u,d(u,v)) holds for every two.
vertices u and u' on the outer boundary of G. '

Proor. Suppose for a contradiction that, for a pair of distinct nets N;, N;j € C(v), both
N; A N; and N; £ N; hold. Assume that N; = anc(u,d(u,v)) and Nj = anc(v',d(v',v)). Let R
be a vf-path between u and v with length d(u,v), and R’ be a vf-path between u and v with
length d(u',v). Let R* be a path connecting u and ' in R+ R'. Then the length of R* is at most
d(u,v) +d(u',v), that is, [V(R*)| < d(u,v) + d(u',v) + 1.

On the other hand, each net N; € {anc(«,1)[0 < i < d(u,v)} U {anc(v/,3)[0 < i < d(u',v)}
is separated by the path R*, that is, any tree connecting N; must occupy a vertex on R*. Since
{anc(u,)]0 < i < d(u,v)} N {anc(u’,9)|0 < i < d(u',v)} = ¢, the vertices on R* must be
occupied by d(u,v) + d(u',v) + 2 different trees, a contradiction. |

LeEmMMa 3. For every net N; a component of the induced subgraph by
Vi = {v € V|F(v) = N;} contains all the terminals in N;.

Proor. Let F; be a tight Steiner forest of Al for edge e. Let T} be the tree of F; connecting
N, and let v be a vertex on T;. Then we may prove that F(v) = N;. Assume that, for every
descendant N; of N;, F(w) = Nj for every vertex w on the tree Ty in F;.

We first prove that F(v) < N From the definition of anc, we have °
F(v) < anc(v,d(v,v)) = anc(v,0) = N;, if v € V(B). On the other hand, if v ¢ V(B), then
there is a face whose boundary contains both v and a vertex w on the tree of a child N; of
N;. Since there is a vertex u on the outer boundary such that anc(u,d(u,w)) = N; and since
d(u,v) < d(u,w)+ 1, F(v) < anc(u,d(u,v)) < N;. Therefore F(v) < N;.

We may assume that F(v) < N;. Let N; = F(v), let u' be a vertex on the outer boundary
such that anc(u’,d(u’,v)) = Nj, and let Q be a vf-path between v’ and v with length d(v',v).
Since u' is a terminal of a descendant of N;, Q — {v} intersects the tree Tj of Nj at a vertex w.
From the assumption of the lemma, we have F(w) = Nj;. Therefore F(v) > Nj, a contradiction. Il

(5)

4. Algorithm and Complexity

The input to our problem is an embedding list of the given graph G together with a net set S.

We find a Steiner forest of a network A_ = (G, S) as follows:

M

2
3
“
&)

¢y

0))

modify the given graph G so that the outer boundary is a simple cycle and every vertices on
the outer boundary is designated as a terminal, and compute index(v) for every vertex v on
the outer boundary;

compute anc(v, 1) for every vertex v on G and every integer 1,0 <1 < n

compute d(u,v) for every vertex pair u and v;

compute F(v) for every vertex v on G; and

construct the subgraph G, = (V,{(u,v) € E|F(u) = F(v)}), find a spanning forest F, and
remove from F the trees having no terminals.

We now show the detail of the above steps below.

We first rank the edges of the outer boundary in clockwise order. For each terminal v, assign
to v the minimum rank of the edges each of which joins ¢t and a clockwise next vertex on the
outer boundary. Assume that there are m terminals in N and let 1,72,..., T be the ranks of
them listed in increasing order. For each two terminals v and v/ with ranks r; and 7.1,
1 < i < m, connect them by two series edges, designate the common vertex of the two edges
as a terminal, and add to net set S a new net consisting of only the terminal(see Fig. 2).
Where rms1 = 1. Finally compute index(v) for every vertex v on the outer boundary. This
step can be done in O(log n) time using O(n) processors.

For each net N;, compute s(N;) and ¢(N;), and compute the parent p(N;) of N; as

_follows. Initially assign to p(N;) the net N; which contains the terminal v with

3

C))

)

index(v) = index(t(N;)) + 1 if index(t(N;)) < b and set p(N;) = oo if index(¢(Ny)) = b,
where b is the number of vertices on the outer boundary B (or the number of terminals in).
Then repeat the following procedure O(log n) times:

for each net N; in parallel do
if p(N;) ¥ N; then p(N;) := p(p(Ny)).

Then one can easily compute anc(v,i), for every vertex v on the outer boundary and every
integer i, 0 < i < n. This step can be done in O(log n) time using O(r?) processors.

For every face of G, find all the vertices on the boundary of the face. Then one can compute
d(u, v) for all pairs of vertices u and v in G by using an algorithm for finding shortest paths
between all pairs of vertices. The algorithm runs in O(log? n) time using O(n?/ log)

processors [GR].

Using the result of (2) and (3) we can compute F(v) for every vertex v € V in O(log n) time
using O(n?) processors.

One can construct G, in O(log n) time using O(n) processors. Furthermore one can find a
spanning forest of G, in O(log? n) time using O(? / log? m) processors [CLC].

(6)

Thus we have the following theorem.

THEOREM 1. A Steiner forest in a planar graph can be found in O(log?n) time using
O(n?/log n) processors on a CREW PRAM,, if all the terminals lie on the outer face boundary. M

5. Some Extensions

1. Suppose that all the terminals of every net are located on one of the h face boundaries
B1,Ba,...,Bs. Then we can find a Steiner forest in such a network N =(G,S) by using the
algorithm above as follows:

let S; C S be the net set on B; for every face boundary B;;

for each permutation Bi,,By;,..,B;, of the h face boundaries and each
ei, € By, ei, € By,,...,e;,_, € B;,_, in parallel do

begin
for each boundary B;,1<j<h-1do
begin
find a tight Steiner forest F;; for edge e;, in network 9\(.-‘,- = (G, Sy);
remove the forest Fy; from the graph G, that is, G := G — F,
end;
find a tight Steiner forest F;, for an arbitrary edge e;, € B;, in network
N, = (G, S,);
check whether F = Fy + F5 + - - - + F}, is a Steiner forest of AL or not
end.

Therefore, a Steiner forest of A can be found in O(hlog? n) time using O(nh*2 /log n)
processors, and in poly-log time if A is constant.

2. Suppose that two face boundaries B, and B, are specified and every net consists of two
terminals, one on B; and the other on B,. Then we can find a Steiner forest (disjoint paths) in
such a network in O(log? n) time and Q(n® /log m) processors by using an algorithm which is
similar to the algorithm presented in Section 4. Using the algorithm above for finding disjoint
paths, we can find a Steiner forest in a planar network A’ in which all terminals lie on two face
boundaries in O(log2 n) time using O(n/log n) processors. Note that Al may have a net
intersecting with both boundaries B; and B,. Furthermore using the disjoint path algorithm we can
also find a maximum number of internally disjoint paths between two specified vertices in a planar
graph in O(log? n) time using a polynomial number of processors.

(7)

Acknowledgment

We would like to thank Professors N. Saito for fruitful discussions.

[CLC]

[GR]

(KL]

[Lyn]
{RS]
[Schl1]

[Scha]
[SAN]

References

F. Y. Chin, J. Lam and I Chen, Efficient parallel algorithms for some graph problems,
Communications of the ACM 25, 9(1982).

A. Gibbons and W. Rytter, Efficient Parallel Algorithms, Cambridge University Press,
Cambridge(1988).

M. R. Kramer and J. van Leeuwen, Wire-routing is NP-complete, Report
No. RUU-CS-82-4, Department of Computer Science, University of Utrecht, Utrecht,
the Netherlands (1982).

1. E Lynch, The equivalence of theorem proving and the interconnection problem, ACM
SIGDA Newsletter 5:3, pp. 31-65 (1975).

N. Robertson and P, D. Seymour, Graph minors. VI. Disjoint paths across a disc, Journal
of Combinatorial Theory, Series B, 41, pp. 115-138 (1986).

A. Schrijver, Disjoint homotopic trees in a planar graph, manuscript(1988).

A. Schrijver, personal communication, 1988.

H. Suzuki, T. Akama and T. Nishizeki, Finding Steiner forests in planar graphs, Proc.
1st ACM-SIAM Symp. on Discrete Algorithms, pp. 444-453(1990).

(8)

