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The largest common subgraph problem (LCSG, for short) asks to
find a common connected subgraph of the given two graphs G; and G,, with

the largest number of edges. In this paper, we develop polynomial time
algorithms for LCSG when both G; and G, are trees.
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1 Introduction

Given two graphs G; and G,
the largest common subgraph problem
(LCSG, for short) asks to find a com-
mon connected subgraph of both G,
“and G,, with the largest number of
edges. These problems appear in de-
tection and recognition of the largest
connected substructure possessed com-
monly by a plural number of chemi-
cal structures in the structure-activity
studies, where exploring functional
groups or particular structural frag-
ments common to organic molecules
which have the same biological or phar-
macological function is one of the sig-
nificant issues. Several computational
methods for the problem of finding
largest common substructures in two
or more molecules were suggested (see
e.g., [2, 4, 9, 10]). Generally, how-
ever, their algorithms arisen in such ap-
plication are quite time-consuming as
they are performed in exaustive manner
based on atom-by-atom (i.e., vertex-by-
vertex) comparisons. It is true that
chemical structure diagrams are closely
related to the graphs in their repre-
sentation. Thus more efficient algo-
rithms are now actually required for the
LCSG problem in systematization of
the computer-assisted design in chem-
istry.

LCSG in general graphs is obviously
N P-complete as Hamiltonian circuit
problem, which is known to be N P-

complete [1], can easily be reduced to
this problem where G, = Cjy (a cycle
on |V| vertices) and Gy = G(= (V, E)).
Efficient algorithms may, however, exist
for some special cases.

In this paper, we develop polynomial
time algorithms for LCSG when both
G, and G, are trees.

2 LCSG  Over a
Rooted Tree

In this section, a polynomial time
algorithm for LCSG is developed when
both G, and G, are rooted trees (T3, ;)
and (T3, 73), where r; (r4) is the root
of T (Ty). For each vertex v in (7, 1),
let (T'(v), v) denote the subtree of (T, 1)
whose root is v and spanned by all the
descendants of v. We first introduce
procedure L CS for obtaining the largest
common subtree (7',7) of two rooted
trees (71, 1) and (Ty, r9) where r corre-
sponds to both r; and ry, respectively. -

Procedure

LCS((Ty, 1), (Ty, 72), N((T1, 71), (T3, 73)))

Input: = Rooted trees (71,r,) and
(Tg, Tz).
Output: The

number N((T1,71), (T3, 7s)) of edges of
the largest common subtree (7,7) of
(Ty,71) and (Ty,ry) where 7 corre-
sponds to both r; and r,, respectively.
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begin (Initialization)
For each leaf [; of (T3, 7) and [} of
(T2) T2),

N((Th(L:), 1), (T5(1), 1)) < 0.
end

begin
Let Viy.ooy Vg and Wy, ..., Wqr be
sons of the roots 7, and ry, respec-
tively. Recursively call procedure
LCS((Th Tl), (T2> T2)) N((Tl(vi)’ 'Ui)a
(To(w;),w;))) for ¢« = 1,...,d, j

1,...,d, and construct a bipartite
graph G = (Vi,Vo, E, c¢), where
Vi = {(TI(’U;),’U,')li - 1)“"d}a
Vo = {(Ty(w;),w;)|l7 = 1,..,d},
E = {(To)w), (To(w), w)li =
1,..,d, 7 = 1,...,d'} and the weight

c((T1 (i), v:), (Ta(w;), w;)) of each edge
((T1 (i), vi), (Ta(w;), wy)) is

N{(Ty(w;), wsi), (To(v;), v;))+1 (3 = 1,...

d, j=1,..d).

N((Ty, 1), (Ty,r2)) « the value of the
maximum weight matching [7] of G.

end O

Note 2.1. Throughout this paper, we
introduce algorithms for obtaining the
number of edges of the largest common
subtree. It is easy, however, to mod-
ify such algorithms so that the actual
largest common subtree is obtained, al-
though we omit the details. O

)

Lemma 2.1. Procedure LCS cor-
rectly finds the number N((T%,r),
(T3, 79)) of the largest common subtree
(T, r) of (T1, 1) and (T3, 2), here r cor-
responds to both 7, and 7y, in O(nin,)

time, where n; (ns) is the number of
vertices in (T, 1) (T2, 72))-

(Proof) We shall prove this lemma by
induction on h, where h is the height of
the tree which is heigher than or equal
to the other among (77, ;) and (7%, r2).
This lemma is trivial when h = 1. Sop-
pose that this lemma holds when h <
H—1,1e, N((Tl(vi)J vi)) (T2(w.7')awj))
obtained by procedure LCS is the
number of the largest common sub-
tree of (Ty(v;),v;) and (T2(w;), w;) for
each pair (T1(v), v:) and (T(w;), w;),
where vy,...,v5 and w,,...,wy are
sons of the roots r, and rs, respec-
tively. Without loss of generality, we
assume that the height of (71,7m) <
the height of (T3,1y), i.e., the height
of (Ty,r3) is H. Let (T,r) be the
largest common subtree of (71, 7y) and
(Ty,75) where r corresponds to both
ri and 7y, and let (T',7) ((T",72))
be the subtree in (Ti,71) ((T2,72))
isomorphic to (7,r). We consider
a bipartite graph G (Vi, Va, E,c),
where V; = {(T1(»), )|t = 1,...,d},
Vy {(T2(wj))wj)|j 1’“'1d/}1
B o= {((T(w), ), (To(ws), w)li =
1,..,d,j = 1,..,d'} and the weight
c((Ti(v:), %), (T2(w;), w;)) of each edge
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(T2 (vi), vi), (To(wj), wy)) is
N((Tl(vi)) vi): (T2(wj)’ wJ))) +1
(i=1,..,d,j=1, ...,d’).

Consider the set of edges M =
(T3 (02), ), (T (a0g), w) (T (05), )
and (73(w;),w;) corresponds to the
same subtree of (T, 7)} (C E). Then M
must be the maximum weight matching
of G as, otherwise, let M’ be a matching
of G whose value is greater than that of
M and we can construct a larger com-
mon subtree of (T, r;) and (T3, r3) from
M' C E, where r corresponds to r;
and ry. This, however, contradicts the
fact that (7,r) is the largest common
subtree of (71,7;) and (7%, 7s), prov-
ing that the common subtree obtained
by the algorithm is also the largest one
when h = H, as desired. Thus we have
proved this lemma by induction.

The time complexity is now ana-
lyzed.  Note that the most time-
consuming part is the maximum weight
matching. We assume here that h; <
hy where hy (hy) is the height of Tj
(T3). The maximum weight matching
is solved at vertices within distance h,
from 75 in T, and at each vertex v whose
degree is ky matched with vertex in
Ty, whose degree is k;, the maximum
weight matching is solved in O(kZk,)
time by a well-known primal-dual type
algorithm (see e.g., [7]). Thus the time
complexity in total is

> O(kiks) = O(niny). O

Now we turn to LCSG where the root
of common subtree may correspond to
any vertex in (71, ry) ((T2, m2)).

Note 2.2. The root r of the largest
common subtree (T, 7) must correspond
to at least one of r; (of (71,71)) or ry
(of (T, 73)) as:

Let (T",v1) ((T",v;)) be the subtree
isomorphic to (T, 7) in (Ty, r1) (T3, 72))
and consider path s; in (T}, 7,) (s2 in
(T3, 7q)) from vy to ry (from vy to 73)
and, without loss of generality, we as-
sume that s; < s, holds. Let s’ be the
path in (T3, 7) from vy to an ancestor
v’ of vy, whose length is s;. Then by ap-
pending s; (s') to (T7,v1) (T, v3)), we
have alarger common subtree of (77, 7;)
and (T, ry), contradicting the assump-
tion. O o

Based on Note 2.2, we have the fol-
lowing algorithm LCRT for obtaining
the largest common subtree of (73, r;)

and (T3, 13).

Algorithm
LCRT((Ty, 1), (Ta,72),N) .

Input:  Rooted trees (71,7;) and

(Tg, 7’2).

Output: The number N of edges of
the largest common subtree (7,r) of
(Tl, 7‘1) and (Tg, 7‘2).

Step 1. For each vertex v in (77, 7)
call LCS((T1(v), v), (Ty, 2),

N((Ty(v), v), (T3, 7))

Step 2. For each vertex v in (73, 79)
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call LCS((Ty(v),v), (11, 1),

N((T2(v)) 'U), (TI’ Tl)))'
Step 3.

N —maz{ max N((Ti(v),v), (T,

v 1IN (T1,r1)

N((T2(v)a ’U), (Tla "'1))}

Step 4. Halt. O

T3)), .max
v 1n (Ty,r2)

Theorem 2.1.  Algorithm LCRT
solves LCSG over rooted trees in
O(n2n3) time, where n; (n,) is the num-
ber of vertices in (77, 7,) ((T3,72)).

(Proof) The correctness is based on
Note 2.2 and that of procedure LCS,
hence that of Lemma 2.1.

Step 1 in algorithm LCRT is per-
formed in O(nynin3) = O(n2n2) time
and Step 2 of algorithm LCRT is exe-
cuted in O(nyniny) = O(n?n2) time by
Lemma 2.1. Thus the time complexity
of this algorithm in total is O(n2n2). O

3 LCSG over
- Undirectred Tree

an

In this section, we develop a poly-
nomial time algorithm for the largest
common subtree T' of undirected trees
Ty and T5. Let (71,71) ((T2,72)) be a
rooted tree obtained from Ty (73) by
choosing an arbitrary vertex r, in T
(ro in Ty) as a root. Then a rooted
tree (7, r) isomorphic to rooted sub-

trees (77,v') in (T1,7,) and (T, v") in

(Ty,r2), both corresponding to 7', are
also the largest common subgraphs of
(Ti,r1) and (T3,73). Conversely, let
(T, v) be the largest common subtree of
(Ty,r;) and (T3, r3) and T” be the corre-
sponding undirected tree obtained from
T by neglecting the direction of edges
and by not specifying any vertex as a
root. Then T is also the largest com-
mon subtree of 77 and T,. Based on this
observation, we have the following algo-
rithm LCUT whose time complexity is
O(n2n?) where n; (ny) is the number of
vertices in T3 (T3).

Algorithm LCUT

Input: Undirected trees T} = (V1, F})
and T2 = (%,Ez)

Output: The number N of the edges
of the largest common subtree of undi-
rected trees 73 = (Vi, Ey) and Ty =
(VZ) EZ)'

Step 1. Choose arbitrary vertices
ry of 77 and 7o of Ty, respectively,
and construct rooted trees (713, r;) and
(T3, rg). Execute algorithm LCRT((T7,
Tl),(TmTz),N)-

Step 2. Halt. O

4 Concluding
Remarks

We can easily apply algorithm LCUT
developed in this paper to the recog-
nition of the largest common substruc-
ture of two chemical compounds with
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tree structures by specifying which ver-
tex (edge) of T, may correspond to
which vertex (edge) of T, according to
the definition of structural similarity
(see e.g., [10]) which is most suitable
for the purpose of each research. Al-
though applicability of the present al-
gorithm is limited to acyclic molecules,
it would be possible to apply it to wider
class of molecules which have isolated
simple rings by abstracting or devising
the graph representation of their struc-
tures. '

Finding some other special cases in
which LCSG can be solved efficiently,
providing good heuristic algorithms for
general graphs and developing algo-
rithms to find the largest common sub-
graph of more than two graphs (see
e.g., [9, 10]) seem to deserve further
research. The algorithms developed in
this paper may be useful for these pur-
poses.
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