7 v 2V X & 16-5
(1990. 7. 16)

C-oriented Polygon o#z8 3R MREIC O T

R, P BR, fRE RE
FAEBRY: THE

ZIYOHRE D c-oriented LIFIENZ O, EE¥h 3 AUOHFIBEREHL I AL i n).
AT T DX S AZDOWICH LERERRMEY T~ 3. LEFERBEE L &, n @02 IR OH
&St LT, BHZLDE q BEL LN B, p LD 3 SOERYFIET IHECTH 5. bhb
ROTA=Y X4 O(n log n) OFSIEFR & RIS, q XD 3 SOt BoZ0E%
O(logn + t)REICTHET 3. A, COTATY XLk S BENABESICHIKET 5.

The Intersection Searching Problem for C-oriented Polygons

Xue-Hou TAN, Tomio HIRATA and Yasuyoshi INAGAKI

Faculty of Engineering, Nagoya University, Chikusa-ku, Nagoya 464, Japan

A set of polygons is called c-oriented if the edges of all polygons have a constant number
of previously defined orientations. The intersection searching problem is examined for such
objects: Given a set S of c-oriented polygons and a c-oriented query polygon ¢, report all the
polygons in S that intersect g. Our algorithm requires O(n log n) space and preprocessing
time and reports the ¢ polygons of S that intersect ¢ in O(log n + t) time, where n is the

cardinality of S. Furthermore, the algorithm is extended to the case where S is a dynamic set

of polygons.

1 Introduction

Polygon intersection searching is one of the most fundamental problems in computational ge-
ometry. A considerable amount of effort has been devoted to this problem. Most of the results
obtained concern two basic types of polygons, i.e. rectangles with edges parallel to the co-
ordinate axes and polygons whose edges are of arbitrary orientations. In [9], Giiting (1984)
considered the problem on a set of “c-oriented polygons” and gave the eflicient algorithms in a
static as well as a dynamic setting.. C-oriented polygons are those whose bounding edges have
a constant number c of orientations. Since then, many improvements have been made on the
complexities for both rectangles and arbitrarily oriented polygons, but nothing for c-oriented
polygons. Here we reconsider the c-oriented version of the polygonal intersection searching
problem, and devise new algorithms with better time and space bounds.

The notion of c-orientedness was introduced by Giiting [8], which leads to a study on “c-
oriented” geometry later [3, 8,9, 10, 15, 16, 18, 19]. Motivations for the study are two-fold: One
is to bridge the gap in complexity between orthogonal objects and arbitrary objects; the other
is that there really exist some applications where objects are finitely oriented, for example, new

chip designs use not only 0° and 90° lines but also 45° and 135° lines.

2 C-oriented Polygonal Intersection Searching

The general polygonal intersection searching problem is defined as follows: Given a set of simple
polygons, each with a bounded number of edges, find the polygons whose intersection with a
query polygon of the same type is nonempty.

In this paper we study the c-oriented version of the polygonal intersection searching prob-
lem. First, we define the notion of “orientation”. An orientation is a vector with a positive
y component which passes through the origin. We describe an orientation « as the (counter-
clockwise) angle from the z axis. See Fig. 1. A polygon is called c-oriented if each edge of
the polygon is parallel to one of ¢ possible orientations chosen from the collection C' = {ay,
ag, -+, a.}. We will treat the collection {a, a3, --+, a} as fixed for the rest of this paper
and restrict the input polygons (query polygons and queried polygons) of our algorithm to be
finitely oriented with respect to this collection.

Y4

><1}

Fig. 1. Orientation a defined in the coordinate system.

As is well known [4], polygonal intersection searching can be reduced to three subproblems:

(1) polygonal range searching

(2) polygonal point enclosure searching

(3) segment intersection searching

In the following the c-oriented versions of the three subproblems are respectively solved.
Multiple reports caused by singular cases can be easily avoided using extra care. Combining

these results (see Theorem 2, Theorem 3 and Theorem 4), we obtain:

Theorem 1 Given a set S of n c-oriented polygons and a c-oriented query polygon g, the t
polygons in S intersecting q can be reported in O(logn + t) time using O(n log n) space and

preprocessing time.

This improves Giiting’s result [9] of O(log?n + t) time, O(n log n) space and O(n log*n)
preprocessing time. For comparison, let us consider the complexities of the best known algo-
rithms developed for rectangles and arbitrarily oriented polygons. Combining the recent results
for the three problems [1, 13, 17], we can solve the general problem in O(log n + 1) time,
O(n*) space and O(n'log n) preprocessing time. When polygons are restricted to rectangles,
the problem can be solved in O(log n + t) time, O(n log n [log log n) space and O(n log n)
preprocessing time [1].

2.1 Polygonal range searching
In this section we study c-oriented polygonal range searching : Given a set S of n points and
a c-oriented query polygon g, report all the points of S that lie in g.

There exist two kinds of solutions for the general problem (with an arbitrarily oriented
query polygon). The problem can be solved either in optimal O(log n) query time using O(n?)
space [13] or in O(n®%%) query time and optimal O(n) space [6]. For a query rectangle, the
enclosed points can be reported in O(log n) query time using O(n log n [log log n) space [1].

To solve the range searching problem, the key is how to decompose query polygon g. Here
we decompose ¢ into rectangles and triangles (with one vertical edge). See Fig. 2. Using the
plane sweep method, ¢ is divided into triangles and trapezoids (with two vertical edges), and
then, each trapezoid is refined into one rectangle and at most two (right) triangles. It is obvious
that a polygon with k edges can be partitioned in O(k log k) time into O(k) rectangles and

triangles.

Fig. 2. A polygon divided into rectangles and triangles.

The problem is now solved by determining for each constituent rectangle or triangle the
points that fall in it, and hence, reduced to two subproblems: rectangular range searching and
triangular range searching. The first problem is well studied and can be solved in O(log n)
query time and O(n log n [log log n) space [1]. To solve the triangular range searching problem,
the c-orientedness becomes crucial. Each triangle (with one vertical edge) is characterized by
the two orientations of its bottom and top edges, which leads to a classification of the resulting
triangles of ¢ into (¢ — 1) *(c — 2) classes by the combination of edge orientations (We
assume without loss of generality that some two orientations are parallel to the coordinate
axes). All the triangles in a class have the important property that whose edges are parallel
to three fixed orientations. When queries are restricted to this kind of triangles, the problem
is called homothetic range searching. Chazelle and Edelsbrunner [2] have developed a so-called
priority search dag that supports such range searching in O(log n) query time, O(n) space and
O(n log n) preprocessing time. Thus the point set S is organized into (¢ — 1) * (¢ — 2)
different priority search dags, one for each triangle class. With each triangle of query polygon
g, we search the appropriate structure for the points that lie in the triangle.

Theorem 2 summarizes the results on c-oriented polygonal range searching.

Theorem 2 Given a set S of n points and a c-oriented query polygon q with a bounded
number of edges, the t points of S lying in q can be reported in O(log n + t) time with
O(n log n [log log n) space and O(n log n) preprocessing time.

Taking c into account, the space requirement is O(c* n + n log n [log log n). The query
time is independent of ¢. This improves Giiting’s result of O(log’n + t) time and O(c? n log n)
space. In practical applications, ¢ must be rather small to make our solution efficient.

2.2 Polygonal point enclosure searching
C-oriented polygonal point enclosure searching is defined as follows: Given a set S of n ¢
oriented polygons and a query point g, report all the polygons in S which enclose q.

For the general problem, Tan et al. [17] obtain the result of O(log n) query time and
O(n?) space. In contrast, the optimal solution of O(log n) query time and O(n) space for the
rectangular version of the problem is already given by Chazelle [1].

Let us see what kind of result we can obtain for the c-oriented problem. Again, all the given
polygons are divided into rectangles and triangles. The problem is reduced to two subproblems:
rectangular point enclosure searching and triangular point enclosure searching. With the hive-
graph [1], rectangular point enclosure searching can be solved in O(log n) query time and O(n)
space. To solve the second problem, the set of triangles is split into (¢ — 1) * (¢ — 2) disjoint
subsets according to the combination of edge orientations. Many subsets may be empty. Note
that the cardinality of the union of all subsets is O(n). On each subset we consider the point
enclosure searching problem. Let S, s denote the subset whose bottom edge and top edge have
orientations o and 3 respectively. See Fig. 3 (Suppose that the vertical edge is the right edge).
A triangle in S, 3 can then be denoted by a triple (zo, @, fo), where 0 is the orientation

perpendicular to orientation §. Query point ¢ = (x4, @, B,) is enclosed by a triangle of Ssg
if and only if the following conditions jointly hold:

$q.§$0, a_l)sa—qa ﬂ_qsm'
These conditions are trivially transformed into a well-known relation “<” of dominance between
two 3-dimensional points, that is

(zq, _a;1 B;) "< (:Eo, —631 F(;)
Thus, triangular point enclosure searching becomes the dominance searching problem in three

dimensions.

<\

|
To X

Fig. 3. A triangle in the (z, @, f) coordinate system.

Gabow et al. [7] have given a solution to 3-dimensional dominance searching with O(log n)
query time, O(n log n) space and preprocessing time. While Chazelle and Edelsbrunner
[2] trade space for query time and obtain a result of O(log?n) query time, O(n) space and
O(n log®n) preprocessing time. Either structure of them can be employed. For c-oriented
polygonal point enclosure searching, (¢ — 1) * (¢ — 2) such structures are used. Given a query
point g, search all the structures for the points dominating it. This completes the solution of

c-oriented polygonal point enclosure searching.

Theorem 3 Given a set S of n c-oriented polygons with a bounded number of edges and a
query point q, the t polygons of S enclosing q can be reported in O(log n + t) (O(log’n + t))
time using O(n log n) (O(n)) space and O(n log n) ((n log’n)) preprocessing time.

Taking ¢ into account, the query time is O(c? log n + t) ((¢* log?n + t)). The space
requirement is independent of c¢. This improves Giiting’s result of O(c?log?n + t) time and
O(n log n) space.

2.3 Segment intersection searching

C-oriented segment intersection searching is: Given a set S of n c-oriented segments and a
c-oriented query segment g, report all the segments in S that intersect g. Chazelle [1] has given
a solution of O(log n) query time and O(n*) space for arbitrarily oriented segments and an
optimal solution of O(log n) query time and O(n) space for orthogonal segments.

As Giiting [9] did, we can simply reduce the c-oriented segment intersection searching prob-

lem to several instances of the orthogonal problem. Using the hive-graphs, we obtain:

Theorem 4 Given a set S of n c-oriented segments and a c-oriented query segment g, the
t segments of S intersecting g can be reported in O(log n + t) time using O(n) space and
O(n log n) preprocessing time.

Giiting uses the layered segment-binary trees instead of the hive-graphs, which requires to
increase the space bound by a factor log n. Again, the hidden multiplicative function of ¢ in

our result is quadratic (see [9] for details).

3 The dynamic Solution

We now consider the intersection searching problem on a dynamic set of c-oriented polygons.
Most of the data structures described in Section 2 can not be applied in the dynamic case.
We take a different approach, which is mostly borrowed from Giiting [9]. Giiting’s algorithm
mainly benefits from the standard data structures, such as, segment trees, range trees, priority
search trees and interval trees [12, 14].

For dynamic triangular range searching, (¢ — 1)* (¢ — 2) range-priority search trees can be
used, one for each class of query triangles. Consider the class of query triangles whose bottom
edge and top edge have orientations a and 3 respectively (see also Fig. 3). All points in S
are stored in the top level range tree over the = coordinates and the set of points associated
with each node is then organized into a priority search tree over the (@, B) coordinates. To
retrieve the points of S lying in a query triangle (¢., ¢=, ¢3), one can perform two consecutive
searches with the query ranges ([—o0, ¢.]) and ([¢gx, +00], [—00, ¢5]). It follows that the range-
priority search tree permits the retrieval of the enclosed points in O(log?n) query time using
O(n log n) space. Furthermore, any point can be inserted or deleted in O(log?n) time. Range-
priority search trees also suit for dynamic rectangular range searching. For a query rectangle,
say, described by a quadruple (¢,1, 4s2, qyl, ¢y2), the query ranges become ([qwl, dz2]) and
(lgs1, +00], [—00, gy2])-

As Giiting shown [9], the solution for c-orlented range searching can be inverted for c-oriented
point enclosure searching. These two problems are dual; only the roles of query objects and
queried set are exchanged. This means that segment-priority search trees can be applied for
both dynamic triangular point enclosure searching and rectangular pomt enclosure searchlng,
with the same bounds as in the range searching case. ’ ’

The dynamic solution of orthogonal segment intersection searching is already given by Mc-
Creight [11]. The space requirement is O(n) and the query time is O(log*n). The data structure
is actually an interval-priority search tree. Combining the results on the three subproblems, we

obtain:

Theorem 5 Let S be a dynamic set of n c-oriented polygons. It is possible to represent S in
a data structure with O(n log n) space and O(log*n) update time, so that the t polygons in S
intersecting a c-oriented query polygon can be reported in O(log’n + t) time.

This reduces the space requirement of Giiting’s algorithm by a factor log n.

4 Applications

The solution of c-oriented polygonal intersection searching has many applications, not only
in 2-dimensional space but also in 3-dimensional space. The first example is to report all
intersecting pairs in a set of c-oriented polygons. The problem can be solved by the repeated
searching method. As an immediate consequence of Theorem 5, we can report the ¢ intersecting
pairs in a set of n c-oriented polygons in O(n log?n + t) time and O(n log n) space (see [9]
for details). Using the plane sweep method, Tan et al. [18] present an optimal algorithm of
O(n log n + t) time and O(n) space. In three dimensions, the efficient algorithms have
been given for the hidden line removal problem [10] and the translation problem [16] considered
on a set of c-oriented objects, that is, whose bounding faces have only a constant number of
orientations. It is expected that the methods developed in this paper can also be applied to

other c-oriented problems.

References

[1] B. Chazelle, Filtering search: a new approach to query-answering, SIAM J. Comput.
15(1986), 703-724.

[2] B. Chazelle and H. Edelsbrunner, Linear space data structures for two types of range
search, Discrete Comput. Geometry 2(1987), 113-126.

[3] J.Culberson and G.J.E.Rawlins, Turtlegons: Generating simple polygons from sequences
of angles, in Proceedings, ACM Symp. Comput. Geometry(1985), pp. 305-310.

[4] H. Edelsbrunner, D. G. Kirkpatrick and H. A. Maurer, Polygonal intersection searching,
Inform. Process. Lett. 14(1982), 74-79.

[5] H. Edelsbrunner and H. A. Maurer, On the intersection of orthogonal objects, Inform.
Process. Lett. 13(1981), 177-181.

[6] H. Edelsbrunner and E. Welzl, Halfplanar range search in linear space and O(n%%%) query
time, Inform. Process. Lett. 23(1986), 289-293.

[7] H. N. Gabow, J. L. Bentley and R. E. Tarjan, Scaling and related techniques for geometry
problems, in Proceedings, 16th Annu. ACM Symp. Theory of Computing (1984), pp. 135-
143.

[8] R. H. Giiting, Stabbing c-oriented polygons, Inform. Process. Lett. 16(1983), 35-40.

[9] R. H. Giting, Dynamic c-oriented polygonal intersection searching, Inform. Control
63(1984), 143-163.

[10] R. H. Giiting and Th. Ottmann, New algorithms for special cases of hidden line elimination
problem, Comput. Vision Graphics Image Process. 40(1987), 188-204.

[11] E. M. McCreight, Priority Search Trees, SIAM J. Comput. 14 , 1985, 257-276.

[12] K. Mehlhorn, “Data Structures and Algorithms 3: Multi-dimensional Searching and Com-
putational Geometry,” Springer-Verlag, Berlin, 1984

[13] M.S.Paterson and F.F.Yao, Point retrieval for polygons, J. Algorithms 7(1986), 441-447.
[14] F.P.Preparata and M.I.Shamos, Computational Geometry, Springer-Verlag, 1985.

[15] G.J.E.Rawlins and D.Wood, Optimal computation of finitely oriented convex hulls, Inform.
Computation 7T2(1987), 150-166.

[16] X. -H. Tan, T. Hirata and Y. Inagaki, On translating a set of c-oriented objects in three
dimensions, Tech. Rep., Engineer. Dept., Nagoya University, 1989.

[17] X.-H. Tan, T. Hirata and Y. Inagaki, Spatial point location and its applications, to present
in SIGAL International Symposium on Algorithms, Tokyo, 1990.

[18] X.-H. Tan, T. Hirata and Y. Inagaki, Reporting intersections of c-oriented polygons, Tech.
Rep., Engineer. Dept., Nagoya University, 1990.

[19] P.Widmayer, Y.F.Wu and C.K.Wang, Distance problems in computational geometry for
fixed orientations, in Proceedings, ACM Symp. Comput. Geometry(1985), pp. 186-195.

