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Optimal Fault-tolerant Routing for 2-connected Graphs
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Abstract: The diameter of the surviving route graph R(G, p)/F for a graph G, a
routing p and a set of faults F' (denoted by D(R(G, p)/F)), where two nonfaulty nodes
z and y are connected by a directed edge iff there are no faults on the route from z to y,
could be one of the fault-tolerance measures for the graph G and the routing p.

In this paper, we show that we construct a routing p for any n-node 2-connected graph
G such that D(R(G, p)/{f}) < 2 for any fault f in time O(n?).



1 Introduction

Consider a communication network or an undirected
graph G in which a limited pumber of link and/or node
faults F' might occur. A routing p for a graph defines at
most one path called route for each ordered pair of nodes.
We assume that it must be chosen without knowing which
components might be faulty.

Given a graph G, a routing p and a set of faults F,
the surviving route graph R(G,p)/F is defined to be a
directed graph consisting of all nonfaulty nodes in G, with
a directed edge from a node z to a node y iff the route
from z to y is intact. The diameter of the surviving route
graph could be one of the fault-tolerance measures for the
graph G and the routing p [1, 2]. Many results have been
obtained for the diameter of the surviving route graph
[3, 5, 6, 11, 13].

If the diameter of the surviving route graph is two, the
routing is said to be optimal. Because as long as faults
are assumed to occur in a network, the diameter of the
surviving route graph is more than one. It is shown that
an optimal routing can be constructed for any n-node k-
connected graph such that n > 7k*[logan] [6]. However,
it is an open question whether or not we can construct an
optimal routing for all k-connected graphs for fixed k.

In this paper, we show that an optimal routing can be
constructed for all 2-connected graphs. Imase et al. have
shown an optimal routing for all 2-connected graphs [5].
However, Our routing is completely different from theirs,
and their routing is optimal for only node faults. Our
routing shown here is not only optimal for node faults
and edge faults but also simpler than their routing. We
also show that our routing can be constructed in O(n?)
time, where 7 is the number of nodes in the graph.

2 Preliminary

In this section, we give definitions and terminology. We
refer readers to [4] for basic graph terminology.

Unless otherwise stated, we deal with an undirected
graph G = (V, E) that corresponds to a network. For
a node v of G, Ng(v) = {u|(v,u) € E}. A graph G is
k-connected if there exist k node-disjoint paths between
every pair of distinct nodes in G. For a node v of G and
a node set V! C V — {v} of G, (v,V')-fan is a set of [V'|
disjoint paths from » to all nodes of V'. The distance
between nodes = and y in G is the length of the shortest
path between & and y and is denoted by disg(z,y). The
diameter of G is the maximum of disg(z, ) over all pairs
of nodes in G.

A tree T is an undirected graph that is connected and
acyclic. A rooted tree is a tree T with a distinguished
node r, called the root. Let v be a node in a rooted tree
T which is not the root, and let (vo = r,v1,...,v, = v) be
the simple path from r to v in T'. Then, v; is the parent
of vy and viyy is a child of v;(0 < ¢ < p—1). A node
with no children is a leaf.

Let G = (V, E) be a graph and let z and y be nodes of
G. Define Pg(x,y) to be the set of all simple paths from
the node z to the node y in G, and P(G) to be the set
of all simple paths in G. A routing is a partial function

p: V xV = P(G) such that p(z,y) € Ps(z,y)(z # ¥).
The path specified to be p(z, y) is called the route from =z
to y.

For a graph G = (V, E), let F C VUE be a set of nodes
and edges called a set of faults. We call FNV(= Fy) and
F N E(= Fg) the set of node faults and the set of edge
faults, respectively. If an object such as route or path
does not contain any element of F', the object is said to
be fault free.

For a graph G = (V,E), a routing p on G and
a set of faults F(= Fy U Fg), the surviving route
graph, R(G,p)/F, is a directed graph with node set
V — Fy and edge set E(G,p,F) {< z,y >
lo(z, y)is de fined and fault free}.

A routing p is a minimal routing if |p(z,y)|
disg(z,y) for any ordered pair (z,y) in the domain of p.
A routing p is a bidirectional routing if p(z,y) = p(y, )
for any node pair (z,y) in the domain of p. Note that if
the routing p is bidirectional, the surviving route graph
R(G, p)/F can be represented as an undirected graph and
disp(,p)r (T, y) = dispa,p)/r(y, ¢) for any pair of distinct
nodes z and y.

Let p(z,y)p(y, ) denote the route p(z,y) from z to
y followed by the route p(y,z) from y to z. We call
p(z0,21)p(21,%2) . .. p(%p—1, Tp) & route sequence of length
p from zo to z,. Note that every route sequence is a path
and not necessarily a simple one.

Let G be a graph and p be a routing on G. For an
ordered pair (z,y) of distinct nodes z and y in G, (z,y) is
(d, f)—tolerant with respect to p if for every set of F' of f
faults in G, dispc,p)/r(z,y) < d. If the routing p is appar-
ent in the context; we simply say (z,y) is (d, f)—tolerant.
A routing p on a graph G is (d.f)-tolerant if (z,y) is
(d, f)~tolerant for any ordered pair of distinct nodes z
and y. A graph G is said to be (d, f)—tolerant if there
exists a (d, f)—tolerant routing p on G.

Lemma 1 Let p be a routing on a graph G and let (z, y)
be any ordered pair of distinct nodes in G. If there erist
f + 1 node-disjoint route sequences of length less than or
equal to d for x and y, then (z,y) is (d, f)—tolerant.

8 Optimal Routing for 2-con-
nected graphs

A 2-connected graph with the fewest edges is a cycle graph
C. = ({0,1,...,n =1} {(5,(i + 1) mod n}[0 < i < n —
1}). It is easily shown that if n is even, then we can not
construct any minimal and (2, 1)-tolerant routing on C,.

Theorem 1 [8] There exists a 2-connected graph for
which minimal and (2, 1)-tolerant routing can not be de-
fined.

Therefore, we must find a non-minimal and (2,1)-
tolerant routing to define for all 2-connected graphs.

Let G = (V, E) be a 2-connected graph. Let < denote
a totally ordered relation on V x V. Let define H(v) =
{ulv < w and (v,u) € E} and L(v) = {u|u < v and
(v,u) € E}. For U C V, miniU and maz_ U denote the
minimum and maximum element in U with respect to <.
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If a totally ordered relation < on V' x V satisfies the
following conditions, it is said to be cyclic.

1. There exists an edge (vg, vr) € E such that H(vg) =
¢ and L(vy) = ¢, that is there is an edge between
mazV and minlV.

2. For any node v except vy, H(v) # ¢ and for any
node v except vg, L(v) # ¢.

Example 1 Let C, = (V,E) be a cycle graph. We
can define a cyclic totally ordered relation on V x V as
follows. Let (v1,vs,...,%—1,%,,71) be the cycle. The
specific nodes vy and vy in the cyclic relation are de-
fined to be v; and v,. A relation < is defined to be
{vic1 < %]2 < 1 < n}. The transitive closure of the
relation < is a totally ordered relation and satisfies the
conditions of the cyclic relation. If a 2-connected graph
G contains a Hamiltonian cycle, we can similarly define a
cyclic relation for G. Although every 2-connected graph
does not contain a Hamiltonian cycle, we will show in the
next section that a cyclic relation can be defined for every
2-connected graph.

For a node v in G and a cyclic relation <, we de-

fine two paths Py[v,vg] = (vo(= v),v,...,0%(= va)),
where v # vy and v; = maz Ng(vi-1)(1 < i < k) and
Prlv, vr] = (vo(= v), 91, ..., 0(= v)), where v % vy, and

v; = mingNg(vii1)(1 < ¢ < k). From the definition of
the cyclic relation, two paths Py[v, vg] and Pglv, vg] are
well defined and have the following property, which can
be derived from the definition.

Lemma 2 Let G = (V, E) be a 2-connected graph. For
any node z(# vg,vr), Pulz,vy) and Pylz,v;] are node-
disjoint.

We construct an optimal routing p for a 2-connected
graph on which a cyclic relation is defined.
routing p

1. p(ve, vr) = p(vr, ve) = (va, vr).

2. For «(# va, vr),
p(z,vg) = p(ve, ) = Pylz,vy] and
plz,vr) = p(vr, z) = Prle,v).

3. For z and y such that z # vy, vy, y # vg,vr and
z <Y,
plz,y) = p(y, v} = Prlz, ve)(vi, var) Puly, va].

The routing p is a bidirectional but non-minimal rout-
ing. Figure 1 shows the routing p for the cycle graph C,
with the cyclic relation defined in Example 1.

Lemma 3 The routing p is (2,1)-tolerant.

Proof Let f be any fault in G and R = R(G, p)/{f}. Let
z and y be any pair of distinct nonfaulty nodes in G.

(1) Suppose that ¢ = vy and y = vg. If f # (v, ve)
then disg(z,y) = 1. Otherwise for any node z(# z,%),
the route sequence p(z,2)p(z,y) = Pplz,z]Pylz,y] can
not contain f. Thus, disg(z,y) < 2.

(2) Suppose that- 2z # vz and y = wvy. . There are
two node-disjoint route sequences p(z,vy) = Pylz,vy)

<

plvg, vz)

Figure 1: The routing p for the cycle graph C,.

and p(z,vr)p(vp,va) = Prlz,vr)(v,ve), because of
Lemma 2. Thus, disg(z,y) < 2 from Lemma 1.

(3) For the case that 2 = vy and y # vy, it can be
proved similar to the case (2).

(4) Suppose that © # vg, and y # vg. We can assume
that £ < y. If f = (vg,vg) or (f € V and f < z) or
(f = (f1, f2) € E and min{f1, f2} < ), then the route
sequence p(z,vy)p(ve, y) is fault free. If (f € V and y <
f)or (f = (fi, fo) € E and maz{fi, f2} < y), then the
route sequence p(z,vr)p(vr,y) is fault free. Otherwise,
the route p(z, y) = Prlx,vL](ve, vir) Puly, vy is obviously
fault free. Thus disg(z,y) < 2.

Therefore, the routing p is (2, 1)-tolerant. O

4 Algorithms for the Cyclic Re-
lation

We show two algorithms to compute a cyclic relation for
every 2-connected graph. One is constructed by using
node-disjoint paths in G and is called NDP, and the other
utilizes the property of a block-cutnode graph [4] and is
called BCG.

Given any 2-connected graph G = (V, E), let n = |V]|
and m = |E|. Since a linear time algorithms have been
shown to find a spanning 2-connected subgraph G' =
(V,E') for G such that |E'| < 2n — 6 [10, 12], we can
assume that m < 2n — 6(m = O(n)).

4.1 Algorithm NDP

The algorithm NDP is shown in Figure 2. In the algorithm
NDP, we define specific nodes vg and vz. In the first ex-
ecution of the while loop, (z, {vg,v.})-fan and the edge
(ve,vr) form a cycle and a cyclic relation is defined on
nodes included in the (x, {vg,vr})-fan (Figure 3(a)). In
the later execution of the while loop, the relation is aug-
mented for nodes in the paths (¢ = ao,a,,...,4a;,) and
(z = bo,by,...,b;,) to reserve the conditions of the cyclic



Algorithm NDP

Input a 2-connected graph G = (V, E).
Outout a cyclic relation on V x V.
Algorithm

(1)Let (u,v) be any edge of G;

(2o = v; v — w5

(3)Set vg, < va;

(4)Vo « {v,u};

(5)while V — V, # ¢ do

(9

(6) begin
(7) Let z be any node in V — Vp;
(8-1) (=, {va,ve})-fan is denoted by
(8-2) (z=ao,a1,...,8p1,0, = zg) and
(8-3)  (z=bo,by,...,bp1,by = zL).
Let i, be the smallest index i such that a; € V.
. (10)  Similarly 4 is also defined.
(11-1) Without loss of generality, b;, <* a;,, where
(11-2) <% denotes the transitive closure of <.
(121) Set s’ < by <.
<bh <zr<a <...<ai,

(12-2) where z' denotes the largest node which is

smaller than a;, in V; with respect to <*.
(13) Voe=VoU{ma,...,a5-1,b1,. ., biy1}
(14) end

(15)Output the transitive closure of <.

Figure 2: Algorithm NDP

relation(Figure 3(b)).

We show an example of execution of NDP for a 2-
connected graph in Figure 4.1.

The next lemma is easily proved by induction on the
number of iterations of the while loop.

Lemma 4 Before the execution of line (5) of the a.go-
rithm NDP, the transitive closure of the relation < on
Vi x Vq satisfies the conditions of the cyclic relation.

Lemma 5 Let G = (V, E) be any 2-connected graph. The
algorithm NDP computes a cyclic relation on V x V in
time O(n?%).

Proof The correctness of NDP is immediate from Lemma
4.

In the while loop of NDP(lines (5)-(15)), each line
except (8) can be computed in time O(n). Since
(z, {vm, vp})-fan is computed in time O(n**m) [9] and we
can assume that m = O(n), line (8) can be computed in
time O(n'®). The iteration of the while loop is at most n,
lines (1)-(4) take O(1) time and line (15) can be computed
in time O(n). Thus the running time of the algorithm
NDP is O(n*%). O

4.2 Algorithm BCG

A cutnode of a graph is one whose removal increases the
number of components and a bridge is such an edge. A
block of a graph is a bridge or a maximal 2-connected
subgraph.

For a connected graph G with blocks {B;} and cut-
nodes {c;}, the block-cutnode graph of G,denoted by
bc(G), is defined as the graph having node set , U V;
and edge set B

Vi = {Bi|B:; is a block but not a bridge },
V. = {c;lc; is a cutnode or deg(C;) = 1} and
By = {(Bi,¢j)lc; € V(By), ¢; € Ve}
U{(es, e (e ) s  bridge },
where V(B;) denotes the node set of the block B;.

A node in V; is called a block node. For a block node in
bc(G), B(v) denotes the block in G. For a node v of G
and a node v’ of be(G), if one of the following conditions
holds v is said to correspond to v'.

Dev=v(eW)
2)veV(E)-V.('eW)

Figure 5 shows an example of a graph G and its block-
cutnode graph.

Every block-cutnode graph is a tree [4]. If G is a 2-
connected graph, the following property holds.

Lemma 6 Let G = (V, E) be a 2-connected graph and let
2 be any node in V. Let v be any leaf in the block-cutnode
graph be(G—2) = (BUV,, By), If v € V., then-v € Ng(z)
and if v € V,, then there is a node u in the block B(v)
such that u € Ng(z) and u is not a cutnode of G.

The algorithm BCG is shown in Figure 6. The al-
gorithm BCG is based on a topological ordering [7] on
the directed acyclic graph constructed by regarding the
edges of a rooted tree bc(G — z) as directed from parent
to child and adding directed edges {(v', z)|v € Ng(2), v
corresponds to '} to the directed rooted tree be(G — z).

We show an example of execution of BCG for a 2-
connected graph in Figure 7. If b¢(G — vr) has no block
nodes (V, = ¢), it is obvious that BCG computes 2 cyclic
relation correctly by using Lemma 6. It can be shown by
induction on the number of nodes in G for the general
case.

Lemma 7 Let G = (V, E) be any 2-connected graph. The
algorithm BCG computes a cyclic relation on V x 'V in
time O(n?).

Proof In the algorithm BCG, the procedure orderblock is
called at most n. Each orderblock(H = (V', E'),r, z) can
be computed in time O(]E'|), because the block-cutnode
graph is constructed in time O(| E'|)[9] and preorder of the
nodes in 7' is computed in time O(k). Since m = O(n),
BCG can be computed in time O(n?). O

The main theorem follows from Lemma 3,5 and 7.
Theorem 2 Any 2-connected graph is (2,1)-tolerant.
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Figure 3: An Construction of a cyclic relation.

Figure 4: An example of execution of NDP.
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Figure 5: An example of a block-cutnode graph.

Algorithm BCG

Input a 2-connected graph G = (V, E).
Output a cyclic relation < on V x V.
Algorithm

(1)for each node v.in V do £(v) := undefined,

* (2)Let (21, 7) be any edge in F;

(3)vm « 215 v+ 25

(4)i —1;

(5)orderblock(G, va, v);

(6)Set the relation < to the totally ordered relation
determined by the labels £(v)(v € V).

(Nprocedure orderblock(H, , z);

(8)begin

(9) T ebc(H—2z)=(VHLUV,Ey);

(10) Let T be a rooted tree with the node to which

r corresponds as a root;

(11) Let vy,..., v be nodes in T ordered by preorder;

(12) for j:=1to k do

(13) if v; € V, then
orderblock(B(v;), par(v;), ch(v;))

(14) { where par(v;) is the parent of v;, if v; is
not the root otherwise par(v;)=r and ch(v;)
is a child of v;, if v; is not a leaf otherwise
Ch(’l)j) € NH(Z) U V(vj) }

(15) else { v; €V, }

(16) if £(v;) = unde fined theni setorder(v;, i)

(17) setorder(z,i);

(18)end;

(19)procedure setorder(v, var i);
(20)begin

21)  £(v) < 3

(22) 1e—i+1

(23)end;

Figure 6: Algorithm BCG.



VH=a ; VL= j {lines (2)-(3)}

orderblock(B,a,j) {line (5)}
be(6-3) a/t
b/2 h/é
d/& i/7
c/3
B1/5

node/order

of preorder

[

{lines (9)-(11)}
RCad=1; L (b)) =2;
2 (e) =385 & (d) =4 {line (16}
orderblock (B1,d,¢g) {line (’13)}
bc(B1-g) d/1
e/2 f/3
{lines (9)-(11)}
2 (Ce) =5; & (f) =6 {line (16)}
L (g) = {tine (17}
9 Ch) =8; & (i) =9 {line (16)}
L(iy=10 {line Q7)}

Figure 7: An example of execution of BCG.
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