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Abstract

We present an algorithm named topological walk, which is an on-line algorithm
to give a walk of an arrangement. Here, a walk is a list of cells of the
arrangement in which consecutive cells are adjacent to each other. The
algorithm is input-sénsitive; in precise, given an arrangement of n lines in a
convex region which contains K cells, a walk is given in O(K + nlog n) time and
linear working space. Hence, as a sweep method on arrangements, topological
walk assures the best theoretical performance. Further, we can efficiently solve
several optimal-cell finding problems applying topological walk.



1. Introduction

Arrangements of lines are frequently used in
algorithms of computational geometry [E].
A drawback of the arrangement is its high
space complexity. We need O(n?) space to
store an arrangement generated from # lines,
that is too expensive in many applications.
Therefore, instead of constructing an
arrangement in advance, it is often advanta-
geous to sweep an arrangement updating
more compact data. The ropological sweep
developed by Edelsbrunner and Guibas

[EG1, EG2] is an efficient method for this

purpose. We consider an improved
topological ~ sweep  algorithm  named
topological walk.

Let H = {1, b,..., L} be a set of lines in a
plane. Associated arrangement is denoted
by A(H). A connected open region of the
arrangement is called a cell.
two cells are adjacent if their closures share
an edge. Motivations of the researéh are
following:

Motivation 1:  Let us consider a
problem to find an optimal cell of A(H) with
respect to a given criterion (depending on
information associated with celis). Suppose
the information in a cell is given efficiently
from that of its adjacent cell. If A(H) has

been constructed, we can find the optimal

We say that

cell by searching on the dual graph of A(H). ‘

This method needs O(n?U) time and
O(nt+ I) space, where U is the time to

update the information, and 7 is the space to

store the information of single cell. If we
apply topdlogical sweep (or usual plane
sweep), we should keep O(n) cells in each
step of the algorithm. Thus, space com-
plexity is reduced to O(nl). However, O(nl)
space is still expensive, since / is often con-
siderably large. We would like to reduce the
space complexity to On + ).

Motivation 2: Instead of searching
over entire ~arrange1f1ent, it is often advanta-
geous to search on a small part of an
arrangement. Let us consider a convex sub-
division (of a region) consisting of K cells in
an arrangement. Then, usual topological
sweep needs O(n?) time to search on it, while
plane swéep method solves the problem in

O(Klogn) time (roughly speaking). We

‘would like to design an algorithm which

sweeps the subdivision in O(K-+ nlogn)
time.. This motivation resembles to that of
the optimal intersection reborting problem
of set of line segments [CE].

Given a convex polygonal region R, the
lines of H cut R into convex sub-regions
(cells), and the corresponding subdivision is

denoted by A(H;R).

1. 1.)
W = (ry, Fzpee 1) OF cells in A(H;R) is called a

Definition (Figure A sequence

walk -if r,, is adjacent to r for each
l<i<m-—1. A complete walk is a walk
containing all cells in A(H;R).

Our definition of the walk coincides
with the graph theoretic walk [H] on the
planar dual graph of A(H;R). Topological



Figure 1. Walk of an arrangement

walk finds a complete walk‘of A(H;R) in an
on-line fashion. In each step, it keeps 6n1y a
cell (with additional O(n) information).
Thus, it satisfies MotiVation I.

The algorithm is based on the
topological sweep together with the depth
first search of the upper horizon tree, and is
sensitive to the size of the subdivision.

More precisely, if K is the number of cells in

each line of H intersects with the stem twice
without loss of generality.

For a pair of edges e and f of an
arrangement, we call e dominates f if there
is a cell r incident to both e and f such that

e is above r and fis below r.

Definition 2 (Figure 2). "A cut of A(H;R) is

a list .of (open) edges C= {e,...,e,} . of

-A(H; R) satisfying one of the following con-

A(H;R) and s is the number of corners of R ,

the algorithm sweeps the arrangement in
O(K + nlog(n + 5)) time and O(ﬁ + s) space.
Thus, Motivation 2 is satisfied for the subdi-
vision of a convex region R by an arrange-

ment.

2. Cut and Upper Horizon Tree

The region R is bounded by a convex
polygon B(R) with s vertices. Let z be the
leftmost vertex of B(R). Cutting B(R) at z,
we obtain a clockwise oriented chain from z,
to z, where z, and z, are copies of z. This

chain is called the stem. We can assume

ditions for each i = 1,2,..,m—1:
©): e,, dominates e,

(ii): The left end point of e, is on the stem,
and there exist an edge f,, of A(H) to the
left of e,;l on the same line such that f,,
dominates ¢; in A(H).
(iii): The left end point of ¢ is on the stem,
and there exist an edgefi of A(H) to the left
of ¢, on the same line such that e,, domi-
nates f; in A(H).

 We say the index i is a gap index if
above condition (ii) holds.

‘We relabel the lines with respect to the
ordinates of their left intersection with the
Consider the left-
most edge ¢(0) on / in A(H,R). Then, the list
C, = (e,(0), e(0), .., (0)) is a cut, which we
call the initial cut of A(H, R).

stem in ascending order.

Definition 3 (Figure 3). We define the upper

horizon tree T(C) for a cut C , which is bas-
ically same as that of [EG1]. Let k be the
first gap index of C. Then, we start with the
cut edges (starter edges) e, e,,.., ¢ and

extend the edges to the right. When two



Figure 2. Cut and gap index

(extended) edges come together at an inter-
| section point, only the one of higher slope
continues on to the right; the other one stops
" at the point. If an edge intersects the stem,
' the edge is joined to the stem. How should
we treat the rest of cut edges €1, €xyzreees €n !
We correspond ¢; a dummy edge ¢ for each
j=k+1,k+2,.,m, which branches from
the stem at the left intersection of corre-
sponding line outside the region R. Thus,
we obtain a binary tree 7(C) rooted by z,.
We call an edge of the arrangement
lying on T(C) an edge piece of T(C), or an
edge in short. The path on the stem
between two consecutive intersections with
the arrangement is also called an edge piece
although it may contain corners of the
boundary polygoen. In order to distinguish
from the edge piece, we call an arc for the
segment betwceﬁ two nodes of T{C) , which
coincides with a graph theoretical edge of

the tree. Obviously, an arc of T(C) is a

Figure 3. Upper horizon tree

union of edge pieces ( on a same line or on
the stem ). ’

An arc of T(C) is called a leaf arc if it
contains a cut edge of C or the root z; in
the other words, one of its endpoints is a
leaf node or the root of the tree. A
I;ranching node v of the tree is called a leaf
branch if two leaf arcs meet there. A leaf
branch is called a twig if two cut edges meet
there, or a cut edge and the stem meet there.
Notice that a leaf branch need nbt be a
twig. It is obvious that there is at least a
leaf branch if there is at least a cut edge.

We consider thé depth first search on
T(C) starting from the root z, where we
search the right branch first at each
branching point. We denote ¥(C) for the
first encountered leaf branch during the
depth first search (Figure 4).

The following is the key lemma (Overmars

and Welzl [OW] essentially gave it in the

dual version):



Figure 4. Twig vW(C)

Lemma 1. W(C) is a twig.

We update the cut by the following
operation called an elementary step at a twig

updating the upper horizon tree.

Definition 4 (Figure 5). If cut edge ¢ and

e,, meets at the twig WC), we denote e'; (
resp. €',,) for the edge on the same line as
e, (resp. e, ) whose leftl end poidt is W(C).
The elementary step o replaces ¢ and e, of
C by €, and ¢, respectively to create
another cut C'. '

We show how to update the upper
horizon tree after ¢ is done. " We extend the
line {o) containing both e,,.and ¢'; to the
right of wW(C) to find the intersection p(c)
with 7{C). Then, connecting ¢’; to the tree at
p(o) , we obtain T(C").

We must consider the case WC) is the
twig where a cut edge e meet the stem at its
right endpoint. Here, the elementary step
simply erase e from the cut. However, if e is

erased, a gap index of the cut may be elimi-

nated, and new starter edges may be added

Figure 5. Elementary step

to the upper horizon tree. Suppose the
edges e.,,..., e are added as new starter

edges in C’. In such case, searching on 7{C)

‘from WC), we find the branching point of

the dummy edge e, before finding a twig.
We execute an operation similar to an ele-
mentary step there, that is, we find the
intersection of the line containing e,,, with
the upper horizon tree, and join e, to the
tree at that point. Joining edges e,,,,..., e, by

a series of the operations, we obtain 7(C’).

3. Algorithm to sweep 4(H;R)

3.1. Procedure Sweep

I. C = G, is the initial cut;

2. Construct T{C);
while C is nonempty, do;

3.1. find W(C), :

3.2. execute the elementary step at w(C);

3.3. update C and T(C);
end_do;

This algorithm correctly sweeps the
arrangement. The difference from the

topological sweep algorithm of [EGI] is



Figure 6. Search for the next twig
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that we specify the place where next elemen-
tary step will be done. We remark that the
data structure is much simpler in our

version corhpared with that of [EGl], which

uses both upper horizon tree and lower .

horizon tree in order to find a candidate of
next elementary step.

Let us give an efficient implementation
of the algorithm SWEEP. We consider an
efficient way to find the next twig W(C’) after
the cut is updated from C into C’. If (C)is
not on the stem, we go back with an arc on
the tree to the root to find a node w(C). If
WC) is on the stem, we define w(C)= W(C).
The following is a key lemma (Figure 6).

Lemma 2. w(C) is equal or precedent to
WC') in the depth first search of T(C').

From Lemma 2, we can find wWC’)

during the depth first search starting from

w(C).

3.2. Analysis of the algorithh

The initialization needs O(x log(n + 5)) time
including the sorting of the intérsecting
points of the lines of H with the stem.
We visit O(K + n) nodes during the depth
first search because of Lemma 2. Thus, the
cost of the SWEEP is O(K + nlog(n + s))
except for the cost to update the upper
horizon tree. 7 A

We prepare some notations to analyze
the cost to update the upper horizon tree.
For an edge e in T(C), the path from e to
Let

the root is denoted by Path(e).

C =(e,..,e,) be the cut. For each ¢
(i=1,2,.,m — 1), the intersection of Path(e)
and Path(e,,) is denoted by f(e) (see Figure

7). The following lemma is obvfous:

Lemma 3. Suppose an elementary transfor-
mation o is done at a twig where cut edges e,
and e,, meet. Then the intersection point

p(o) lies on the path from e_, to p(e.,)-



From Lemma 3, the following two dif-

ferent methods to find p(c) are applicable:

Forward search: We search for p(c) from
e, on-the path Path(e,_,).

Backward search: We search for p{c) from
B(e_,) on the path Path(e,_;) backward.

Unfortunately, there is an example
where K= O(nJ/n), s=0(/n), and total
updating cost is Q(n"*) time if we adopt the
forward search, and there is another example
which needs Q(nJ_K— ) time if we adopt the
backward search.

In order to obtain an algorithm 's'ensi-
tive to K, we consider the following
improved method. We define u(e) by the
branching point of Path(e) from the stem if
B(e) isvon the stem. Otherwise, we define
u(e;) by B(e) (Figure 7).

Obviously, p(e) is located either between e,
and p(e._,), or on the stem between u(e_;)
and f(e.,). Note that we can maintain f(e)
and u(e) for each ¢ in O(1) additional time

and space.

Mixed search: We search for p(a). from
u(e_,) on Path(e_,) backward. Moreover, if
u(e_,) is on the stem, we search for p(c) on
the stem from both p(e_;) and B(e_,) in pér—
allel. ‘

Theorem 1. We can sweep the arrangement
A(H,R) in O(K+ nlog(n+s)) time and
O(n+ s) space, where s is the number of
corners on R and K is the number of cells of

the arrangement in the interior of R.

Figure 8. Arrangement in a bay

We devote the rest of this section to
prove Theorem 1. First, we consider the
case where R is a bay, that is, R is consisting
of a segment L and a convex chain I' below
it. Moreover, each line of the arrangement
has its left endpoint on L, and we assume

these endpoints are sorted (Figure 8).

Suppose the length of the chain I' is A. We

consider L as a member of the arrangement,

and start the sweep at the twig on L.

Lemma 4. If R is a bay, we can sweep R in

(K + n + hlog n) time.

Proof of Lemma 4. We adopt the mixed
search method. We begin with the following

simple observation:

Claim 4.1 Let [ be a line containing an edge
e on the path from ple_,) to p(o). Then, [
intersects (o) in the interior of R.

Similarly to the analysis in [EG2], we

‘charge the cost to traverse e to the inter-

section of {o) and [ except for the rightmost

edge on the path. Then, it is seen that each



intersection is charged at most once. Since
these intersection are located in R because of
Claim 4.1, the cost to search backward in
the interior of the bay is (K + n). We‘must
estimate the cost for searching on the
boundary chain T (that is, between u(e.,)
and f(e_,)). We consider the following

game:

Game: Let /=[0,4] is an interval. We
insert n dividing points. into / in an on-line
fashion and decompose it into # + 1 subint-
ervals. Supf:dse a value z is inserted into
the subinterval [,=[x;,x,,]. Then, we
divide it into [x,z] and [z, x,,]. We pay

min {z — X;, x;,; — z} units for this insertion.

' Claim 4.2. It costs O(hlog n) units for the
worst case to complete above game. ‘

Since - we adopt the mixed search
method, it follows from the claim that the
cost to find the intersections oh I’ is
O(hlog n) in total. Hence, we have Lemma
4. '

Now, we consider the general case
where R is a convex region. We ignore the
dummy edges for a while. There are
N = O(n) bays in the initial upper horizon
tree. These bays are called gulfs We can
observe that topological walk is processed as
a sequence of gulf sweeps. A new gulf
sweep starts if the topological walk visit the
left end edge (that is a cut edge) of the lower
chain of the current gulf. Let n; , k;, A; be

the number of inserted lines, intersections,

and length of chain of the j-th gulf in the
process. |

f‘,(kj-i— m+ klogn). is  the total
upda};ilng cost. Obviously, ﬁh,: O(n+ s),
ﬁ‘,k,- = O(K),y and ﬁni = O(Ié= -l}- n). Hence,
Bl(K +(n+ s)logn) ?iine is needed in total.

However, if s>n, we can reform the
region into one with at most 2z corners in
O(nlog(n + 5)) time preprocessing without
deleting any cell. Hence, the total cost of the
SWEEP is reduced to (K + n log(n + s)).

We must take care of dummy edges in
a gulf. Suppose e is a dummy edge corre-

sponding to a cut edge e on a line /. Because

-of the property of the algorithm, each line

which intersects with / at a point above e
out of R has been eliminated when e joins
the upper horizon tree. Thus, although the
line / starts from the chain of the bay, claim
4.1 holds.

Lemma 4 is valid, and we obtain the

Hence, the analysis shown in

Theorem 1.
4. Walk on A(H; R)

We consider the walk on the arrangement
from the left region of W(C) to that of W(C’).
To make statements simple, we add all the
intersections of the lines with the stem as the
nodes of the upper horizon tree, although
some of them are of degree 2. Then, the fol-

lowing two lemmas are easily seen:

Lemma 5. Each arc of T(C') encountered
searching- for WC') consists of single edge

piece.



Lemma 6. During the depth first search, the
region on the right (with respect to the direc-
tion from the root to leaves) of the current
searched edge piece is changed if and only if

we encounter a leaf node or a degree 2 node.

We roughly sketch the algorithm to
walk on the arrangement.
Procedure WALK ;
1. Execute the procedure SWEEP; ;
2. During the depth first search, we trace
the right region of the current searched edge;
Note that we don’t store the walk but
only trace it. During the depth first search,
a vertex is visited at most three times. More

precisely, we can prove the following:

Theorem 2. The above procedure generates a
complete walk of length at most 2K+ n in
K + nlog(n + s)) and On+s)

working space.

time

5. Applications

Since the topological walk can sweep a
part of an arrangement input sensitively, it
is an efficient paradigm for almost all the
problems solved by sweep methods.

A catalog of applications of topological
sweep is given in [EG1]. Among them, the
minimum area triangle search can not be
solved by topological walk, since it needs the
lower horizon tree in an essential way.
However, the other applications -- com-
puting a longest monotone path, computing

a longest monotone concave path, com-

largest empty convex subset, finding a
maximal stabbing line, and visibility prob-
lems -- can be solved by using topological

walk.

5.1. Finding an optimal cell

We consider a cost function f=f{r)
associated with the arrangement, and search
for the cell with the optimal cost. We con-

sider a data structure Data(r) from which we

- calculate f(r)._ It needs T time to construct

puting a largest convex subset, computing a -

Data(r), and I space to store it. - Moreover,
we can dyﬁamically obtain Data(r) and‘
compute fir) in U time, if we know both
Data(r’) and £*') for an adjacent cell 7. The
updating time U is small compared with T.
the case T= O(n),
1=O(n“)(0<_ot$ 1), and U= O(1).

If we compute fr) along a walk of

Typically, - imagine

length M updating the dynamic data, we
can obtain the cell with an optimal cost in
O(MU+ T) time.

walk, we obtain the following theorem:

Applying topological

Theorem 3. We can find the optimal value
of the cost function and its associated cell in
O(nlog(n+ s)+ KU+ T)

On + s+ I) space.

time _and

Let us compare the topological walk with
other paradigms. If we construct the
arrangement and walk on it in an usual
fashion, it needs O(nlogn+ KU+ T) time
and O(K+I) space.
method needs O(nlog n + K{log n+ U} + T)

time and O(n/) space. The usual topological

The plane sweep



sweep needs O(n?+ KU + T) time and O(nl)
space, or O(n*+ KT) time and O(n+ 1)
space. Thus, the topological walk is always
advantageous to each of these paradigms.
We will give a typical example of the

optimal cell finding.

5.2. Linear approximation of multiple point
sets |

Let S; be sets of n; points for i = 1,2,..,b.
S= US and n= Zn, We would like to find
a hn:ll which apprommates all S; optimally.
For a line /, N,(I) is the difference bemfeen
the number of points located above / and
that of points located below [ in S;. Consider
N(l):_‘::li\/,(l)l, and find a line which mini-
mizes l;:/'1(1). If b=2, there is a line / called
the which
N()=0 , and an efficient O(nlogn) time

algorithm is known [E]. However, if 5> 3,

ham-sandwitch  cut satisfies

1o such efficient algorithm is known, and we

solve it by walking on the arrangement gen-

erated by the dual lines of pbints of S.

Theorem 4. A line which minimize N(I) is

found in O(n?) time and O(n) space

Next, consider . the function

‘f(l) Zd(l p) , where d(l, p) is the vertical

dxstance between [ and p. We would like to
minimize f{[)= max.,, . ). I b=1,

Yamamoto et al [YKII] gave a linear time

we

algorithm by using the prune and search

method. However, for larger b, the

topological walk gives an efficient algorithm.

Theorem S. We can obtain - the optimal
approximation line in (bn?) time and O(n)

space.

6. Conclusion

We have presented an algorithm to walk on
A(H,R) of an
Topological walk is typically efficient if we

a part arrangement.
search a cell with an optimal cost which can
be calculated using certain dynamic data.
Hence, the importance of topological walk
will increase in proportion to the develop-
ment of dynamic algorithms permitting both

insertions and deletions.
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