7oAy X A 184
(1990. 11. 22)

MR AERRT B OB EX

FEIRER 2 B
ARMERE WRTER

KBTIk, Krentel[JOSS 36(1988) 142 & HPFNY 045 8 (1o MBLL 7 K i 1= & - T
PP B WA B £ R . 4. MidPEmetric Turing machine (& ZF BN 5141 2 # B
EHHT DS AXFHMBED BT Turing@B) OWMN IR 2 RB%ES 2 5HEO
TFAETH, TOLE PP RKROLSICHBNY 615 PFIP - ppMidPI L o)
EEA B *»k;ﬁr;ﬁomwn%nmwmw”f.ﬁfﬁa EHFRENE

The Complexity of Finding Medians

Seinosuke TODA
" Department of Computer Science and Information Mathematlcs
Umversnty of Electro-Communications
‘Chofu-shi, Tokyo 182, Japan

Abstract: The purpose of this article is to characterize PF#P in a similar manner to Krentel’s
characterization of PFNP [JCSS 36(1988), 490-509). Let MidP be the class of functions that give the
medians in the outputs of metric Turing machines (for more precise deﬁmtlon see the next section). Then
we show the following characterization of PF#P: PF#P = PFMidPll Hence, intuitively speaknng, finding a -
median is as hard as PF#P; this forms a contrast to an intuitive interpretation of Kretel’s result that finding
a maximum (or minimum) is as hard as PFNP. As its applications, we show several natural <P -complete
problems for D#P.

1 Definitions and notations.

Definition. A metric Turing machine [6] (metric TM for short) is a polynomial time bounded NTM
such that every branch writes a binary number and halts. Let N be a metric TM. We denote by Out g (z)
the set of outputs of N on an input z. We define KthValue(z, k) to be the k-th number in Outg(z). We
also define mid g (z) to be the median in Out g (z). More precisely, for each input = to N, midy(z) is the
number m in Outg(z) such that 0 < ||[{k € Outg(z) : k < m}|| — [[{k € Outy(z) : m < k}|| < 1. We
define KthP = { KthValuey : N is a metric Turing machine } and MidP = { midy : N is a metric Turing

machine }.

Definition. A function f is polynomial time 1-Turing reducible to a function g (f <F% g) if there
exist polynomial time computable functions T; and T3 such that for every z, f(z) = Ti(z,g(T2(z))). We
denote by PF[!] the class of functions that are <PF-reducible to g and we define prGU — Uyec;PFgm

for any class G of functions.

Notations. In the next section, we denote by M or M; a nondeterministic Turing machine that is an
acceptor, by N or N; a deterministic transducer, and denote by N or N; a metric TM. We denote by f,
g, or h a polynomial time computable function and denote by F, G, and H a function that has higher

complexity.

2 The main result.

In this section, we show that PF#P = pFMidP(1],
Proposition 1 [10] #PPH C PF#Pl,

Main Theorem PF#F = PFKthPl] — ppMidP(1],

Proof. (PF#P ¢ PFK¢hP] ¢ PFMide) This follows from Lemma 3 and 4 below.

(PFMidPll] C PF#P) [t suffices to show that MidP C PF#P. Let N be any metric TM. We define a
funciton F as follows: for evéry string z and natural number k, F(z,k) = ||{j € Outg(z) : j < k}|.

It is easy to see that F' € #PNP. By using a standard binary search technique, we see that midg €

PFF. Hence, from Proposition 1, we have midg € PF#P"" C pFPF*FI C PF#P, a

Definition [2] A set A is in PP if there exists a polynomial time bounded NTM M such that for every
y, if y € A, then more than half of computations of M on y are accepting; otherwise, more than half of

computations of M on y are rejecting.
By the following proposition, we will deal with PFFP instead of PF#F,
Proposition 2 [9] PF#P = PFPP,

Lemma 3 Let F be any function in PF#P. Then there exists a metric Turing machine N such that F
- <PE KthValuey. .
Proof. In this proof, we use Proposition 3 above. Let N and A be a polynomial time bounded

transducer and a set in PP, respectively, that witness ' € PFFP, lLet. M be a PP-machine accepting A.

Without loss of generality, we may assume the following conditions:
(1) M’s transition function has exactly two posibilities for the next ID from each ID.

(2) There exists a polynomial p such that for every input of length m, all of M’s computation paths have

the same length p(m).

(3) There exists a polynomial I such that for every input of length n, all queries made by N on the input
have the same length I(n).

{4) There exists a polynomial g such that for every input of length n, the number of queries made by N

during the computation is g(r).

We encode each computation of M into a binary string and identify a computation with the string

encoding it. Under this setting, we define a metric TM N working on a given input z as follows:
(Phase 1) Set I to the initial ID of N on =.

(Phase 2) Execute the following'steps one after another for i = 1,2,.. ., ¢(|z]).
(Step ?) '

(a) Simulate N from I until the time that a query ID occurs.

Let y be a query string made by N at this time.

(b) Guess an oracle answer a;, either 0 ("no”) or 1 (*yes”), to the query string y.

Guess a computation w; of M on input y.
(¢) According to each case below, N operates as follows:

(Casel :ifa=0 and w is rejecting). Set I to the no ID corresponding to the query ID above
and proceed to the next step. ‘
(Case 2 cifa= 1 and w is accepting). Set I to the yes ID corresponding to the query ID

above and proceed to the next step.

(Otherwise) Output 2'(#D) and halt (for the definition of ¢, see below).
(Phase 3) Output a;wjaswoazws. . - @g(|z])Wq(lz)) and halt.

In the above, we define ¢ to be a polynomial such that for every input =, 240z is greater than all

outputs in Phase 3. Obviosely, such a polynoniia.l exists. Next, we define kg by ’

e(lzl)-1
k=14 Z or((Iz1)-1 (2P('(I=l)))"_
i=0 '

As a usual manner, it is common to specify a computation of N4 on input z by a sequence of oracle
answers to queries made vby N4 on z. Furthermore, it is obvious that once we have the sequence, we
can cémpute the output of N4 on z in polynomial time in |:c| The purpose below is to show that if
ajwyagw; .. -Gg()Wq(lz]) 18 the kz-th number in Outy(x), then ajas.. -@y(|z)) is the sequence of correct
oracle answers of the oracle set A to the queries made by N4 on input 2. If we can accomplish this, then

we have a Sf_g--reductioh from F to Kthvaluey because k. is computable in polynomial time in jz| and

we can compute @18z ...ay(|s}) from ajw ... dg(jz|)We(j<|) in polynomial time in Jz| (recall that the length
of each w; is p(I(]z]))).

In order to accomplish the above purpose, we define some terminology and state some conventions. We
say that a computation of N on an input z is valid if the computation halts in Phase 3. In the above
definition of N, nondeterministic moves appear only on each Step i of Phase 2. Hence, we can specify a
valid computation of N on an input z by a binary string, say ajwiazws < Bg(|s])W(=])> Guessed in each
Step i(b). Below, we identify the sequence with its specifying valid compuytation. Furthermore, if a binary
string aw guessed in some Step i(b) is followed by a valid computation of N, then we call it a partial valid
computation. We also regard all partial valid computations as binary numbers. ‘

Let z be any input to N. From the assumptions (1), (2), and (3), we can easily see that the number of
all valid computations of N on z is exactly 2PUUD)(=1) and this value is greater than k, defined above.
Hence, KthValueN(z, k,,) is an output in Phase 3. Let KthValuey (2, kz) = aywiaaws. . .ag(zpyWy(z)), Where
each g; is an oracle answer guessed in Step ¢(b) and w; is a computation of M on the query string concerned
in that step. First, we show that a, is the correct anwser of the oracle set A to the first query string made

by N4 on input z. The following is the key claim to show this.

Claim 1 Let njpqc. denote the number of all partial valid computations in Step 1 (note that nj pace
is even from the assumptions (1), (2), and (3)). Then ayw; above is the (1} pacc/2 + 1)-th partial valid

computation in all partial valid computations in Step 1.

Before proving this claim, we show, by using Claim 1, that a; is the correct answer of the oracle set
A to the first query made by N4 on input z. Let y be the first query string. From the definitin of N,
it is obvious that the number of accepting (rejecting) computations of M on y is equal to the number of
partial valid computations of N on z in Step 1 that are of the form 1w (resp., Ow). Furthermore, from the
assumptions (1), (2), and (3), the number of all computations of M on y is equal to 2°((=D) and it is also
the number of partial valid computations of N on z in Step 1 (i.e. n1pace in Claim 1).

Now assume y € A. From the deﬁnftion of PP, more than half of all compuations of M on y are
accepting. Hence, we know that the number of partial valid computations of N on z in Step 1 that is of
the form Ow is less than half of all partial valid comp‘utatidns of N on z in Step 1 because the string w
should be a rejecting computation of M on y. Hence, from Claim 1, a;w; must be of the form 1wj; that is,
a) represent the oracle answer ”yes”. Conversely, assume y ¢ A. Then, more than half of computations of
Mon y are rejecting. Thus, the number of partial valid computations of N on z in Step 1 that are of the
form Ow is greater than half of all partial valid computations in Step 1. Hence, from Claim 1, ajw; must
has the form Ow; that is, a; represent the oracle answer "no”.

Now let us prove Claim 1. First, for any pa.rtial valid computation aw in Step 1, we estimate the
number of valid computations of N on input z of which aw is a prefix. Let y be a query string concerned
in Step 2 after N on input = has guessed aw in Step 1. Then, from the deﬁnition‘ of N, we see that a
binary string a’w’ is a partial valid computation of N in Step 2 if and only if o’ = 0 and v’ is a rejecﬁng
corﬁputat.ion of M on y, or, a’ =1 and v is an accepting éomputation of M on y: Thus, as in the case of
Step 1, the number of partiai valid computations of N in Step 2 is equal to the number of all computations

of M on y, which is equal to 2°00=1) from the assumptions (1), (2), and (3). By a similar argument, we

can observe that in every Step i, the number of partial valid computations of N on z is equal to 2°U0=D),

From this observation and the assumption (4), we have the following fact.

Fact 1. The number of valid computations of N on z of which aw is a prefix is equal to (2P((I=1))e(I=)-1,

where aw is any partial valid computation of N on z in Step 1.

For any partial valid computation aw in Step 1, let aw00...0 (awll...1) denote the least (resp., great-
est) binary number possibly written by N on input = of which aw is a prefix. We also define PACC}V(:::)
to be the set of all partial valid computation of N on z in Step 1.

Recall that KthValuey (2, k) = a1w1. . .42y Wy(|z})- Then, ayw has to satisfy the following condition:

J{u € Outg(z) : u < ayw100...0}| < k- < [[{u € Outg(z) : u < aywi1l...1}.
From Fact 1, we have the following;:

[l{u € Outg(z) : u < a1,00...0}|| = [[{ow € PACC}(2) : aw < aywy }|| - (2P (=D))el=D-1, ang
[{u € Outg(z) : v < aywy11...1}|| = ||{{aw € PACC} () : aw < aywy }]| - (2p(0=D)yeCl=D)-1,

Let m = |l{aw € PACC}I(::') s aw < aywi}l]. Then, from the above observations, we have the following
inequality:
(m — 1) . (2PC0UD)e=D=-1 < . (200U=D))ell=D)-1

From this, m has to satisfy
ko /(2700)a0eD=1 < 1 <k, /(2P00DN)aUeD-1 4 p.

From the definition of k,, there exists a real number , 0 < a < 1, such that k/(2°0(s)al=-1 —

2p00=)-1 ¢ & Hence, m must satisfy the following condition:
2PU0z-1 4 o < m < 2P00=D)-1 4 o 4 1.

Hence m = 2PU(=D)-1 4 1. We again notice that the number of partial valid computations of N on z in
Step 1 (i.e., Ry pacc in Claim 1) is equal to the number of all computations of M on y, the first query string
made by N4 on z, which is also equal to 2P((I2))) from the assumptions (1), (2), and (3). Hence we have
M= 1Ny pace/2+ 1. This completes the proof of Claim 1.

By the same argument, we see f'.ha(; ay is the correct oracle answer of the oracle set A to the second
query made by N4 on input z, given that a; is correct; and hence, by induction, all of a;’s are the correct
oracle answers that appear in the computation of N4 on input z.

As mgntioned previously, once we have the correct oracle answers in the computation of N4 on input z,
we can compute the output of N4 on z in polynomial time in |z|. This provides us with a <PZ.-reduction
from F to KthValueg. ‘ ‘ O

Lemma 4 For any metric TM N, there exists a metric TM N; such that KthValuey <P% midy, .
Proof. Let ¢ be a polynomial that is a strict upper bound on the length of outputs of N. We defined

a metrlc TM N, working on input z#k as follows.

(Phase 1) N; nondeterministicaly chooses one of Phases 2, 3, and 4 below
(Phase 2) N, nondeterministicaly chooses one of (a) and (b) below.
(a) It simulates N on input z.
(b) It guesses a binary number j such that 0 < j < 2t(#D),
If j < 2002D) — k — 1, then it outputs 2'0=) 4+ j; otherwise, it outputs 2!(=D+1,
(Phase 3) N, simulates N on input z. When N outputs j, N} outputs 2(IsD+2 +7.
(Phase 4) IV guesses a binary number j such that 0 < j < 2IsD+1,
If j < 21020 4 k — 1, then it outputs 2t(=D+3 4 j. otherwise, it outputs 2t(=D+4,

For each i = 2,3,4, we denote by Out;'vl(z) the set of binary numbers written in the Phase i of N} on
input z. Then it is easy to see that ||Out?"1 (@)l = 2!0=D —k 4 ||Out g (2)|], |[Out? (@)l = l|Outy(z)[l, and
||Out}‘v‘ (z)]] = 242D 4 k. Furthermore, it is easy to see that for every i € Outih(z), j € Outy (z), and k
€ Out;jl(z), i < j < k. Denoting by m the k-th number in Outg(z), it follows from these observations
that m 4 2%0=D+2 js the median in Outy (z). This implies KthValuey <PF midy, . ' o

3 Complete functions for PF#F and complete problems for
D#P.
In this section, we show some natural complete functions for PF#F under <FPE-reducibility.

- Lemma 5 The following functions are <{%-complete for PF#F,
"~ ¢ LEXICAL K-th SAT ’
Input A boolean formula ¢(z;, z3,...,z,) and a natural number k.
Output The lexicographically k-th satisfying assignment zjz; - - -z, € {0,1}" of ¢.
¢ LEXICAL MIDDLE SAT
Input A boolean formula ¢(zy, z2,...,z,).
Output The lexicographically middle satisfying assignment z;22--- 2, € {0,1}" of p. O

Theorem 6 The following functions are <PF-complete for PF#P,
‘ ¢ LEXICAL K-th 3SAT
Input A boolean formula ¢(z1,23,...,2,) in 3CNF and a positive integer k.
Output The lexicographically k-th satisfying assignment 2125 --- 2, € {0,1}" of ¢.
e LEXICAL K-th HAMILTONIAN CIRCUIT
Input An undirected graph G = (V, E) and a positive integer k.

'Output The lexicographically k-th Hamiltonian circuit of G, where we assume that a linear
ordering on E is’ giveh, and for any subsets Ey, E; of E, E, is greater than E5 if
the smallest edge in Ey — Ej is greater than the smallest edge in Es - Ej.

o K-th SHORTEST PATH ‘

Input An undirected graph G with edge weights and a positive integer k.

Output The k-th shortest path in the graph.

e K-th LARGEST SUBSET

Input A finite set S of positive integers, and positive integers B and k.
Output The sum of integers of the k-th largest subset X of S such that 2iexi< B,
where all subsets of S are ordered by the sum of all elements in the subsets. O

Theorem 7 The following functions are <PE-complete for PF#P,
e LEXICAL MIDDLE 3SAT
Input A boolean formula p(z1,z3,...,2,) in 3CNF.
Output The lexicographically middle satisfying assignment z,z3--- 2, € {0,1}" of ¢.
¢ LEXICAL MIDDLE HAMILTONIAN CIRCUIT
Input An undirected graph G = (V, E).
Output The lexicographically middle Hamiltonian circuit of G.
* MIDDLE SHORTEST SIMPLE PATH
Input An undirected graph G with edge weights.
Output The median in all the weights of simple paths in the graph.
e MIDDLE SUBSET
Input A finite set S of positive integers, and positive integers B and C.

Output The median in all the sums of integers of subsets X of S such that B < Zie xi<C.O

We also show that some decision problems corresponding to the above functions are <P _complete for
D#P.

Theorem 8 The following decision problems are <P _complete for D#P.
e LEXICAL MIDDLE 3SAT
Input A boolean formula p(z1, z3,...,2,) in 3CNF.
Question Is z,=1 in the lex. middle satisfying assignment z,z5---z, € {0,1}" of p?
e LEXICAL MIDDLE HAMILTONIAN CIRCUIT
Input An unduected graph G = (V, E) and an edge e.
Question Does the lexicographically middle Hamiltonian circuit of G contains e?
e LEXICAL MIDDLE SIMPLE PATH .
Input An undirected graph G and an edge e.
Question Does the lexcographlcaﬂy middle sxmple path of G contalns e?
» MIDDLE SIMPLE PATH
Input An undirected graph G with edge weight.
Question Is the median in all the weights of simple paths in G even?
e MIDDLE LARGEST SUBSET
Input A finite set S of positive integers, and positive integers B and C.
Output Is the median in all the sums of integers of subsets X of S such that B < JiexisC.O

Acknowledgement The author would like to be very thankful to Prof. Ronald V. Book for his kind

support and his valuable comments on this work.

son T one

References

{1] S. A. Cook, The complexity of theorem proving procedures, Proc. 3rd ACM Symposium on Theory
of Computing(1971), 151-158.

[2] 3. Gill, Computational Complexity of Probabilistic Turing Machines, SIAM Journal on Computing
6(1977), 675-695.

[3] M. Garey and D. B. Johnson, Computers and Intractability: A Guide to the Theory of NP-

Completeness, Freeman, San Francisco, 1979.

[4] D.B. Johnson and S. D. Kashdan, Lower Bounds for Selecting in X +Y and Other Multisets, Journal
of ACM, 25(1978), 556-570.

[5] D.B. Johnson and T. Mizoguchi, Selecting the Kth Element in X +Y and X1+Xa+. . +Xm, SIAM
Journal on Computing, T(1978), 147-153.

[6] M. W. Krentel, The Complexity of Optimization Problems, Journal of Computer and System Science,
36(1988), 490-509.

[7] S. Miyano, Al-complete lexicographically first maximal subgraph problems, Proc. Mathematical
Foundalions of Computer Science, Lecture Notes in Computer Science 324 (1988), Springer-Verlag,
454-462.

[8] C.H. Papadimitriou, On the Complexity of Unique Solutions, Journal of ACM, 31‘(1984), 392-400.

[9] J. Simon, On the Difference between One and Many, Proc. {th Collog. on Automata, Languages, and

Programming, Lecture Notes in Computer Science, 52(1977), Springer, Berlin.

[10] - S. Toda and O. Watanabe, Polynomial Time 1-Turing Reductions from #PH to #P, Theoretical

Compuer. Science, to appear.

[11] L. G. Valiant, The Complexity of Computing Permanent, Theoretical Computer Science, 8(1979),
189-201. '

[12] L. G. Valiant, The Complexity of Enumeration and Reliability Problems, SIAM Journal on Comput-
ing, 8(1979), 410-421. - ' '

