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In this note we give a characterization of tope graphs of oriented fna.troids of rank at most
three, which are essentially equivalent to graphs representing adjacent relationsof regions of
an arrangement of pseudolines in the real plane. This characterization enables us to test in
a polynomial time whether a given graph is isomorphic to such a graph. The problem to
characterize tope graphs of oriented matroids of any higher rank is still open. The properties
of tope graphs shown in this note, in particular, antiopdality and isometrical-embeddability in
hypercube, will be probably useful for the characterization.
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1. Introduction

Through this note, we assume graphs have neither loops nor multiple edges. We denote
the vertex-set, the edge-set and the distance function of a graph G by V(G), E(G) and dg,
respectively. ;

A graph G is embeddablein a graph G if there exists'an injection f: V(G) — V(G'), called an
embedding of G into G', such that [u,v] € E(G) implies [f(u), f(v)] € E(G’). For two connected
graphs G and G’, an embedding f of G into G’ is isometric if dg(u,v) = dg/(f(4), f(v)) for all
%,v € V(G). If there exists such an isometric embedding, G is called zsometrzcally embeddable
in G'.

The hypercube Q(E) on a ﬁmte set E is the graph such that the vertex-set is {—,+}F
and such that X,Y € {- ,+}E are adjacent if they differ in exactly one component. We will
be concerned with graphs isometrically embeddable in some hypercube. Such graphs can be
considered as the graphs G such that the vertices of G can be addressed with elements of
{0,1}F for some E, such that the Hamming distance between addresses of any two vertices is
one. The tope graphs of oriented matroids discussed in this note constitute a broad class of
graphs isometrically embeddable in some hypercube.

Here the “tope graph” of an oriented matroid M represents a natural adjacent relation among
the topes (maxxma.l elements of the cocircuit spa,n) of M, see [4,7,9,10,17]. To characterize tope
graphs of oriented matroids is our main theme in thlS note. This chaxacterlzatxon problem is
fundamental because

(1) the‘tope graph of an oriented matroid deterfnines the oriénted matroid uniquely up to
- reorientation and a complete answer to the problem will lead to an axiomatization of
oriented matroids using only the graph language; ' :

v

(2) in the case of linear oriented matroids, the problem is equivalent to the open problem to
characterize 1-skeletons of zonotopes, for zonotopes, see e.g. [8]; and

(3) in the case of oriented matroids (linear oriented matroids, resp.) of rank at most three, the
problem is essentially equivalent to the open problem to characterize graphs representing
adjacent relations of regions of an arrangement of pseudolines (lines, 'resp.) in R2.

We will first consider the characterization problem in more general systems than oriented
matroid, i.e., L' -embeddable system.(L! -system) and acycloid, and then we will characterize
tope graphs of oriented matroids of rank at most three.

L! -systems, introduced in Section 2, are defined by the reorientation property of topes
of oriented: matroids. The tope graphs of ‘L! -systems are exactly the graphs isometrically
embeddable in some hypercube. For such graphs two characterizations are known, see {1,3,6,16].
In Section 3, we present a constructive characterization of Il -systems. . s

Acycloids [20] satisfy the negativity closedness property in '1ddmon to the roonentatlon
property. In Section 4, we present two characterizations of tope graphs of my(loule '

The characterizations obtained in Sections 3 and 4 will be useful to characterize tope graphs
of oriented matroids. Indeed, in Section 5 we characterize such graphs in the case of rank at
most three. The characterization theorem says : a graph G is isomorphic to the tope graph of
‘an oriented matroid of rank at most three if and only if G'is antlpodal, planar’ and isometrically
‘embeddable in some hypercube- (Corollary-5.3). Using this theorem; we can test in a po]vnomlal
‘time ‘whether a given graph is isomorphic to the graph representing adJacent relatlon of reglons
“of an arrangement of pseudolmes in R2
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For the case of any higher rank and for the linear case even 1f the rank is three, the charac-
terization problem is still open.
The proofs of theorems in this note can be found in [21].

2. Definitions

In this section we introduce L! -embeddable systems and review deﬁmtlons of acycloids and
.‘onented matroids, and then we define the tope graphs of their three systems

Let E be a finite set. A szgned vector on F is an element of {—,0, +}E We will begin with
some notations on signed vectors. For a signed vector X = (X, : e € E) on E, the support
of X is the set {e € F : X, # 0}. The negative —X of X is defined in the trivial way. For
" e € E, we denote by zX the signed vector on F obtained from X by replacing X, by Xe For
X,Y €{=,0,+}F, define D(X,Y)={e€ E: X. = -Y. #0}. .

Let A = (E,T) be a pair with a finite set E and 7 C {—,0, +} An.element e in F
is ‘a, loop of A if X, = 0 for all X € T, and the set of loops ,of A is denoted by Ey. Define

={e€cE:X. =Y, #0forall X,Y € T}. Two distinct elements e and f € E — (EoU E;)

are pamllel if either X, = Xy forall X € T or X, = ~X forall X € 7. Ais called szmple if it
has no loops and no parallel elements. ,

An L' -embeddable system (L - system) is a pair 4 = (F, T), where F is a finite set: a.nd
@#TC{ —,+}F, satisfying: : c

(A1) (reorzentatzon property) if X, Y eTand X ;é Y, there exists f € D(X Y) such that
X € T.

Note tha,t every IL! -system is snnple, but can ha.ve nonemptv Ey. A (snmple) acy Jclozd is a pair
= (E,T), where E is a finite set and ;é TC{- +}r, sat1<:fymg the reorientation property
(Al) and « ,

(A2) X eT 1mphes -XeT.

A genera,l a.cyclo;d ma,y have loops or pa,rallel elements but in thls note, we conslder only sxmple
cases. In either definitions of L!-system or. acycloul, we:call an element of T a tope of A.

Let A = (E,T) be a pair such that 7.C {-,0,+}F. The simplification sim(A) of Ais the
pair obtained by excludmg all loops and by identifying any parallel class (i.e., class of elements
parallel each other) with its representative element. ‘

For an acycloid A = (E,7) and e € E, let T/e = {the restriction of)( to F —e:X,:X €
T}, and call A/e = (E — e,T /e) the elementary contraction of A by e. For an ordered subset
S = {ey,ez,...,en} of E, the contraction A/S of A by S is defined mductlvely by A/S =
(.szm(A/(.S‘ —en)))/en: «

The next theorem presents a characterization of onentod matmuh in terms of topes:

'lhemem 2. 1([15]) ‘An. oriented matroid is a p'ur M = (L,T) where E is a finite set and
0 # T C{-,0,+}F satisfying:

(1) all elemen ts of 7 have the same support;

(2) the simplification sim (M) is an acycloid; and : :

(3) the simplification of every contraction of M has thc 10011(‘nht10n proper Ly

We denote by () the signed vector on the empty set ), and define for convenience that
= (0,{()}) is an oriented matroid, and hence is also an acycloid and an L -system.
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In the above-mentioned three systems, that is, an ! -system, an acyclond a,nd an oriented
matroid, we will be concerned with graphs formed by topes.

We will define the “tope graph” for a general system A = (E,T), _T_g. {‘~—,0,+}E, satisfying
that all elements of 7 have the same support: the tope graph G4 of A is a graph such that
V(G4) = T and such that X,Y € V(G4) are adjacent if and only if there exists no Z €
T - {X,Y} with D(X,Z) C D(X,Y). When A has no parallel elements, X,Y € V(G,) are
adjacent if and only if | D(X,Y)| = 1.

"We give examples of tope graphs of an L! -system, an acycloid and an oriented matroid, in
Fig.1 (a), (b) and (c), respectively. Here we note that the acycloid of Fig.1 (b) is not an oriented
matr01d For such acycloids, see [11, 15, 20].

3. Tope graphs of L! -systems

The class of L!-systems is closely related to the class of graphs isometrically embeddable in
some hypercube. In this section we present a constructive characterization of L!-systems, which
will then yleld a sxmlla.r charactenzatxon of graphs isometrically embeddable in some hypercube.

Proposition 3.1. A graph G is isomorphic to the tope graph of an L1 -system if and only if
G is isometrically embeddable in some hypercube.

Note: Let G be a graph isometrically embeddable in some hypercube Q(F') and let f; and
f2 be isometric embeddings of G into Q(E). We call f; and f, isomorphic if f1(V(G)) and
f2(V(G)) coincide under an automorphism of Q(E). Now let f be an isometric embedding
of G into Q(E), [z,y] € E(G),f(z) = X,f(y) = Y and D(X,Y) = {e}. - Then we have

{Z e f(V(G): Z. = X.,} ={z¢€ V(G) dg(z, z) < da(y, z)} Hence f is umquely determmed
up to lsomorphlsm

Let G be a graph. For X,Y C V(G) [X Y] denotes the set of edges wnth one endpomt in
X and the other in Y. When G is connected, for [e,0] € E(G) we define C(a,b) = {z € V(G):
dg(a,z) < dg(b,z)}. A subset X of V(G) is called convezin G if the subgraph induced by X,
is connected and if for all u,» € X all shortest (u, v) paths are contained in the subgraph:

For graphs isometrically embeddable in some hypercube, the following theorem is well known:

; Theorem 3.2 (D_]okovm[ﬁ]) A graph G is isometrically embeddable in ‘;ome hypercube if and
only if G satisfies

(1) G is connected bipartite, and
(2) C(a,b) is convex for all [a,d] € E(G).

Let A= (E,7) be a pair with a finite set £ and § # 7 C {—,+}E. Let 7, T, C T be such
that 77 U7y = T and T; N T3 # @, and such that for any X € T3 — 73 there exists noe € I/
with =X € Th-T. letpgd E,and put T/ = {X +pt : X e T} U {X 4 p~ : X € T}, where
X +p' (i € {—,+}) denotes the signed vector Z on LU {p} with Z. = X, for all e € I and with
Z, =i. Then we call the pair A’ = (E U {p},T") the expansion of A with respect to 73 and T;.
A is called the L!-ezpansion if (E,T;) and (E,T3) are L' -systems.

Lemma 3.3. If A= (E,7)is an L! -system, any L!-expansion’ A’ of A is also an L!-system.

Theorem 3.4. A pair A = (E,7)is an L' -system with Ey = 0 if and only if A can be
obtained from the smallest L! -system (@, {()}) by a sequence of L? -expansions.

(4]



‘Let G be a graph, and let Wy, W, C V(G) be such that Wy U W, = V(G’) WinWw, #0
and Wy — Wo,W, — Wi] = 0. The expanszon of G w1th respect to W1 and W, is the graph ed
constructed as follows: ‘ :

1) replace each vertex v € Wy N W, by two vertices u,,, ty,, which are joined by an edge;

(i) join u, to the neighbours of vin Wy — W, and wuj, to those in I’V; - Wl, )

(iii) if v,w € Wy N W; and [v,w] € E(G), then join u, to u,, and v/, to v/,

A subset X of V(G) is called L' in G if for all u,v € X there exists at least one shortest (u,v)-
path .of G'in the subgraph mduced by X The expansmn G’ is called L! if Wl and W2 ‘are L}
-subsets of V(G). .

The next theorem is equlva.lent to Theorem 34:

Theorem 3.5. A graph Gis xsometncally embeddable in some hypercube if and only if G
can be obtained from K. by a sequence of L! -expansions.

Note that the above theorem is similar to the constructive characterization of median graphs
by Mulder [18].. The graph in Fig.2 shows the L-expansion of the graph in Fig.1 (a) with respect
to Wy and Wy, where Wi(= T1) = V(G) and Wy(= ’Zé) = {(+++) (+=4), (+ R (++ )}

4. Tope graphs of acycloids

In this section we present two characterizations of tope graphs of a.cyclmds One is in
Theorem 4.2 (Corollary 4.3) and the other is in Theorem 4.6.- e

A graph G, which contains at least one edge, is antipodal if it has a centra.l symmetry, that is,
for any v € V(G) there exists a.unique 5 € V(G); the antipode of v, such that dg(v,u) < dg(v,7)
for all nexghbourhoods u of 7, see [2,13 19] For convenience, we deﬁne a onhe-vertex graph Iil
is antipodal.: : ,

" A connected graph G is even 1f for any vertex v of G there exists a unique vertex v’ such that
dg(v,v') = diam(G), the diameter of G. An even graph G is called harmonic if [«’,v"] € E(G)
whenever [u,v] € E(G), and is called symmetric if dg(u,v) + dg(u,v') = diam(G) for all
u,v € V(G) It is easy to see that every symmetric even graph is harmonic, cf. [14 Proposition
13]. Also we can easily check that a graph is symmetric even if and only if it is antipodal, cf.
[2, p.107]; in the symmetric case, the above-mentioned vertex v" coincides with the antipode of
v. In the following, we will extend the meaning of antipode by calling v’ the antipode of v in
any even graph and use the same no_tat_ion 7 for v'.

Proposition 4.1. If a graph G is lsomorplnc to tlle tope graph of an acyclond G is symmetric
even, or equlvalently, Gis ant1podal

Theorem 4.2. A graph G is isomorphic to the tope graph of an acycloid if and only if G is a
harmonic even graph isometrically embeddable in some hypercube.

Corollary 4.3.-A graph G is isomorphic to the tope graph of an acycloid if and only if G is
an antipodal graph isometrically embeddable in some hypercube.

‘Next we will present a constructive characterization of acycloids similar to that of L!-systems,
and a constructive characterization of tope graphs of acycloids. .

Let A = (E,T) be a pair with a finite set £ and § # 7 C {—,+}F. 'lhe L' -expansion A,
which we defined in Section 3, is acycloidal if T, - Ty = {-X : X € T =T} and if Ty N T3 is
closed under negation.
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Lemma 4.4. If A= (F,T)is an acycloid, any acycloidal expansion A’ of A is also an acycloid.
The next theorem is similar to Theorem 3.4 and the proof is also similar:

Theorem 4.5. A pair A = (E,T) is an acycloid if and only if A can be obtamed from the
smallest acycloid (0, {()}) by a sequence of acycloxdal expansions. ,

Let G be an even graph, and let Wy, W, C V(G) be such that Wy UW, = V(G),W1nW, # 0
and [W; — W,, W, — W;] = 0. The L' -expansion G’ of G with respect to W; and Wy is called
acycloidal if Wo — Wy = {T:v e Wy — Wy} and if v e W) ﬂ Wg 1mp11es TE W1 n W2 It is easy
to see that if G is harmonic even, then so is'G’.

The next theorem is eqmvalent to Theorem 4.5 and Slmllal‘ to Theorem 3.5:

Theorem 4.6. A graph G is isomorphic to the tope graph of an acycloid if and only if G ¢an
be obta.med_ from K by a sequence of acycloidal expansions.

The graph in Fig.1 (b) can be obtained from Q(E = {1 2,3,4}) by the acycloxdal expansion
with respect to Wy and W,, where

Wi(= T1) = {X € {~,+}F : at most two components of X are plus } and

Wa(=T2) = {X € {~,+}¥ : at least two components of X are plus }. -

5. Tope gra,phs of ra,nk-three onented ma,tlolds

In thls sectlon we charactenze tope graphs of onented matrmds of rank a.t most three.

Let'S? be a 2-dimensional unit sphere, that is, S2 = {2 € R3:|| z ||=.1}. A Jordan curve
in S? is the image of a unit circle, under a self-homeomorphism of S2. For a Jordan curve J
in S?, the two components of S2 — J are called the sides of J and denoted by J+ and J > For
convenience, put J%.=J.

A pair (E,J) is an arrangement of Jordan curves in SZ if E is a ﬁmte set and J isa
collection {J! : e € E,i.€ {—,0,+}} of subsets of S? satisfying R

(i) for.any e € E, J° isa Jorda.n curve of S% with sides J; and J}; and . :

+(ii) for any two e and f €.E, |J0 N J}| =2 and Jin J’ # 0 forallii,j € {- ,+}
Let ¢ be the' mapping: S% — {-,0, +}E defined by a(z)e =:¢ if and only if z-€ J'

By Cordovil’s result in [5], we can easily lead the followmg theorem:
Tlleorem 1 Let (E, J) be an arrangemcnt of Jordan curves in s2. "I’hen (7(82) ﬂ{ H)E

is the set of topes of an oriented matroid of rank at most three. Conversely, every orlented
matroid without loops of rank at most three can. be obt'\med this way. ;.. "~ .

Theorem 5.2. A graph G is lsomorpluc to the tope glaph of an orxeﬁted matroid of rank
at most. three if and only if G is harmonic even, planar and 1sometr1cally embeddable in some
hypercube » - ' o o : ;

- Corollary 5:3. A graph G is isomorphic to the tope graph of an:oriented matroid of rank at
most three if and only if G is antipodal, planar and isometrically embeddable in some hypercube.
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6. Concluding remarks

1. One can easily see that Djokovié’s theorem, Theorem 3.2, is a good characterization of
graphs isometrically embeddable in some hypercube, i.e., one can verify the conditions (1), (2)
of Theorem 3.2 in time bounded by a polynomial in V(G). Similarly, Theorem 5.2 is a good
characterization of tope graphs of an oriented matroid of rank at most three. (Note that even
though we don’t know any good characterization of tope graphs of oriented matroids of general
rank, one can test in a polynomial time whether a given graph is isomorphic to the tope graph
of some oriented matroid, see [12].)

2. In relation to Theorem 4.2, we present the next problem:

Let G be an even graph isometrically embeddable in some hypercube. Then is G harmonic
even 7
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